Patents by Inventor Colin C. Baker

Colin C. Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170271531
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it within an epitaxial zinc sulfide (ZnS) matrix. Also disclosed is the related product comprising FeS2 encapsulated by a ZnS matrix in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by a ZnS matrix.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170227333
    Abstract: A transparent composite armor is made of tens to hundreds or even thousands of thin layers of material each with a thickness of 10-500 ?m. An appropriate amount of impedance mismatch between the layers causes some reflection at each interface but limit the amplitude of the resulting tensile wave below the tensile strength of the constituent materials. The result is an improvement in ballistic performance and that will result is a significant impact in reducing size, weight, and volume of the armor.
    Type: Application
    Filed: April 26, 2017
    Publication date: August 10, 2017
    Inventors: Guillermo R. Villalobos, Shyam S. Bayya, Woohong Kim, Bryan Sadowski, Michael Hunt, Robert E. Miklos, Colin C. Baker, Jasbinder S. Sanghera, Alex E. Moser
  • Publication number: 20170200840
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 9705012
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it in crystalline zinc sulfide (ZnS). Also disclosed is the related product comprising FeS2 encapsulated by ZnS in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 11, 2017
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170145167
    Abstract: The present invention provides a method for synthesizing a new class of inorganic-organic polymeric materials. These polymers are made with a backbone comprising chalcogenide elements such as sulfur, selenium, and/or tellurium along with organic crosslinking moieties that determine its physical and optical properties. Also disclosed are the related polymeric materials. These polymers are suitable for optical applications in short wave infrared (SWIR, 1-3 ?m) and mid wave infrared (MWIR, 3-8 ?m) regions.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Darryl A. Boyd, Jason D. Myers, Vinh Q. Nguyen, Gryphon A. Drake, Woohong Kim, Steven R. Bowman, Jasbinder S. Sanghera
  • Patent number: 9608146
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: March 28, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Publication number: 20170029285
    Abstract: A method of purifying a spinel powder includes contacting a spinel powder with an acid solution to form an acid-washed spinel composition and contacting the acid-washed spinel composition with a basic solution to form a purified composition. The purified powder is suited to formation of low-absorption shaped bodies, such as windows for high intensity laser devices.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 2, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Woohong Kim, Guillermo R. Villalobos, Colin C. Baker, Shyam S. Bayya, Michael Hunt, Bryan Sadowski, Ishwar D. Aggarwal, Jasbinder S. Sanghera
  • Patent number: 9533892
    Abstract: A nanoparticle containing monoclinic lutetium oxide. A method of: dispersing a lutetium salt solution in a stream of oxygen gas to form droplets, and combusting the droplets to form nanoparticles containing lutetium oxide. The combustion occurs at a temperature sufficient to form monoclinic lutetium oxide in the nanoparticles. An article containing lutetium oxide and having an average grain size of at most 10 microns.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: January 3, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20150315034
    Abstract: A nanoparticle containing monoclinic lutetium oxide. A method of: dispersing a lutetium salt solution in a stream of oxygen gas to form droplets, and combusting the droplets to form nanoparticles containing lutetium oxide. The combustion occurs at a temperature sufficient to form monoclinic lutetium oxide in the nanoparticles.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 5, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20150295106
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 15, 2015
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Publication number: 20150270412
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it in crystalline zinc sulfide (ZnS). Also disclosed is the related product comprising FeS2 encapsulated by ZnS in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Patent number: 9099606
    Abstract: A method for synthesizing Cu(InxGa1-x)S2 and Cu(InxGa1-x)Se2 nanopowders using flame spray pyrolysis to form solar cell absorber materials. The flame spray product is the oxide nanoparticles of the absorber materials (copper indium gallium oxide). The oxide nanoparticles may be deposited directly onto glass substrates. The oxide nanoparticles are then sulfurdized or selenized with a post deposition anneal directly on the substrate to form the absorber layer for a solar cell device.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: August 4, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Shyam S. Bayya, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20140356575
    Abstract: A composite made of alternating layers of elastic and plastic material provides desirable mechanical properties including high toughness. Each layer has a thickness of between 10 nanometers and 500 microns. Plastic materials that may be used include thermoplastic/thermoset elastomers, aluminum, alloys of aluminum, titanium, and alloys of titanium. Elastic materials include various thermoplastic or thermoset polymers, Al2O3, SiC, TiB2 and B4C.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 4, 2014
    Applicant: The Government of the U.S.A., as represented by the Secretary of the Navy
    Inventors: Guillermo R. Villalobos, Shyam S. Bayya, Woohong Kim, Bryan Sadowski, Michael Hunt, Robert E. Miklos, Colin C. Baker, Jasbinder S. Sanghera
  • Publication number: 20140273336
    Abstract: A method for synthesizing Cu(InxGa1-x)S2 and Cu(InxGa1-x)Se2 nanopowders using flame spray pyrolysis to form solar cell absorber materials. The flame spray product is the oxide nanoparticles of the absorber materials (copper indium gallium oxide). The oxide nanoparticles may be deposited directly onto glass substrates. The oxide nanoparticles are then sulfurdized or selenized with a post deposition anneal directly on the substrate to form the absorber layer for a solar cell device.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 18, 2014
    Inventors: Colin C. Baker, Woohong Kim, Shyam S. Bayya, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20140098411
    Abstract: A method for making a rare earth doped polycrystalline ceramic laser gain medium by hot pressing a rare earth doped polycrystalline powder where the doping concentration is greater than 2% and up to 10% and where the grain size of the final ceramic is greater than 2 ?m. The polycrystalline powder can be Lu2O3, Y2O3, or Sc2O3, and the rare earth dopant can be Yb3+, Er3+, Tm3+, or Ho3+. Also disclosed is the related rare earth doped polycrystalline ceramic laser gain medium prepared by this method.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 10, 2014
    Inventors: Woohong Kim, Guillermo R. Villalobos, Colin C. Baker, Jesse A. Frantz, Leslie Brandon Shaw, Bryan Sadowski, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20130059153
    Abstract: A nanoparticle containing monoclinic lutetium oxide. A method of: dispersing a lutetium salt solution in a stream of oxygen gas to form droplets, and combusting the droplets to form nanoparticles containing lutetium oxide. The combustion occurs at a temperature sufficient to form monoclinic lutetium oxide in the nanoparticles.
    Type: Application
    Filed: August 15, 2012
    Publication date: March 7, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal