Patents by Inventor Colin C. Enderud

Colin C. Enderud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138268
    Abstract: A method of fabrication of a superconducting device includes forming a first portion of the superconducting device on a first chip, a second portion of the superconducting device on a second chip, and bonding the first chip to the second chip, arranged in a flip-chip configuration. The first portion of the superconducting device on the first chip includes a dissipative portion of the superconducting device. A multi-layer superconducting integrated circuit is implemented so that noise-susceptible superconducting devices are positioned in wiring layers formed from a low-noise superconductive material and that underlie wiring layers that are formed from a different superconductive material.
    Type: Application
    Filed: February 17, 2022
    Publication date: April 25, 2024
    Inventors: Colin C. Enderud, Mohammad H. Amin, Loren J. Swenson
  • Patent number: 11957065
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: April 9, 2024
    Assignee: 1372934 B.C. LTD.
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Publication number: 20240070510
    Abstract: Programmable components of a quantum processor may be selectively programmed using digital to analog converters (DACs). A DAC with a first stage and a second stage and first and second quantum flux parametron (OFF) loops galvanically coupled to and extending from a respective one of the first stage and the second stage is discussed. The first stage has a first storage loop interrupted by a first Josephson junction and an interface for communicating with an external component. The second stage has a second storage loop interrupted by a second Josephson junction, the second storage loop galvanically coupled to the first storage loop, the first Josephson junction and the second Josephson junction coupled in series to a first control line. A method of loading flux quanta into targeted DAC stages is also discussed.
    Type: Application
    Filed: January 11, 2022
    Publication date: February 29, 2024
    Inventors: Min Jan Tsai, Colin C. Enderud, Reza Molavi, Paul I. Bunyk
  • Publication number: 20220123048
    Abstract: A circuit can include a galvanic coupling of a coupler to a qubit by a segment of kinetic inductance material. The circuit can include a galvanic kinetic inductance coupler having multiple windings. The circuit can include a partially-galvanic coupler having multiple windings. The partially-galvanic coupler can include a magnetic coupling and a galvanic coupling. The circuit can include an asymmetric partially-galvanic coupler having a galvanic coupling and a first magnetic coupling to one qubit and a second magnetic coupling to a second qubit. The circuit can include a compact kinetic inductance qubit having a qubit body loop comprising a kinetic inductance material. A multilayer integrated circuit including a kinetic inductance layer can form a galvanic kinetic inductance coupling. A multilayer integrated circuit including a kinetic inductance layer can form at least a portion of a compact kinetic inductance qubit body loop.
    Type: Application
    Filed: February 13, 2020
    Publication date: April 21, 2022
    Inventors: Loren J. Swenson, George E.G. Sterling, Mark H. Volkmann, Colin C. Enderud
  • Publication number: 20210384406
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Application
    Filed: May 17, 2021
    Publication date: December 9, 2021
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Patent number: 11038095
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 15, 2021
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Patent number: 10755190
    Abstract: An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 25, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Alexandr M. Tcaciuc, Pedro A. de Buen, Peter D. Spear, Sergey V. Uchaykin, Colin C. Enderud, Richard D. Neufeld, Jeremy P. Hilton, J. Craig Petroff, Amar B. Kamdar, Gregory D. Peregrym, Edmond Ho Yin Kan, Loren J. Swenson, George E. G. Sterling, Gregory Citver
  • Publication number: 20200144476
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Application
    Filed: January 31, 2018
    Publication date: May 7, 2020
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Publication number: 20170178018
    Abstract: An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Alexandr M. Tcaciuc, Pedro A. de Buen, Peter D. Spear, Sergey V. Uchaykin, Colin C. Enderud, Richard D. Neufeld, Jeremy P. Hilton, J. Craig Petroff, Amar B. Kamdar, Gregory D. Peregrym, Edmond Ho Yin Kan, Loren J. Swenson, George E.G. Sterling, Gregory Citver