Patents by Inventor Colin D. McMillen

Colin D. McMillen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11840772
    Abstract: Hydrothermal methods for the synthesis of bulk crystals of alkaline earth metal stannates are described. Methods can be utilized for growth of large, single crystals of alkaline earth metal stannates including fully cubic BaSnO3 and SrSnO3.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: December 12, 2023
    Assignee: Clemson University Research Foundation
    Inventors: Joseph W. Kolis, Rylan J. Terry, Colin D. McMillen
  • Publication number: 20220235488
    Abstract: Hydrothermal methods for the synthesis of bulk crystals of alkaline earth metal stannates are described. Methods can be utilized for growth of large, single crystals of alkaline earth metal stannates including fully cubic BaSnO3 and SrSnO3.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 28, 2022
    Inventors: JOSEPH W. KOLIS, RYLAN J. TERRY, COLIN D. MCMILLEN
  • Publication number: 20190018301
    Abstract: Single, acentric, hexagonal, beryllium borate crystals having the formula Sr2Be2B2O7 with a new structural type with space group of P(-)6 and a unit cell of unit cell a=b=4.6709(7) ?, c=3.8410(7) ? and trigonal borate groups within the unit cell lattice whereby the trigonal groups are fully ordered and directly lined up above each other with no rotation of the stacking groups relative to each other. These crystals can be formed according to a hydrothermal formation process with a size sufficient for use in a variety of laser and nonlinear optical applications.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 17, 2019
    Inventors: Joseph William Kolis, Colin D. McMillen
  • Patent number: 10156025
    Abstract: Heterogeneous monolithic crystals that can include multiple regimes in a complex geometry are described. The crystals can be advantageously utilized in laser applications. The heterogeneous crystals can be created through growth of different regimes in interior voids formed in a seed crystal, which can in turn be homogeneous or heterogeneous. In one particular embodiment, a regime can be grown within a void of a seed crystal by use of a hydrothermal growth process. Formed crystals can be utilized in lasing and waveguiding applications, among others.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: December 18, 2018
    Assignee: University of South Carolina
    Inventors: Joseph W. Kolis, Colin D. McMillen
  • Patent number: 9506166
    Abstract: Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing a garnet-based activator region and a garnet-based Q-switch. Disclosed methods include hydrothermal growth techniques for the growth of differing epitaxial layers on a host. A YAG host material can be doped in one region with a suitable activator ion for lasing and can be formed with another region that is doped with a saturable absorber to form the Q-switch. Regions can be formed with controlled thickness in conjunction. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity to provide short pulses of high power emissions using high frequency pulse modes.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: November 29, 2016
    Assignee: Clemson University Research Foundation
    Inventors: Joseph W. Kolis, Colin D. McMillen, J. Matthew Mann
  • Patent number: 9493887
    Abstract: Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing a vanadate-based activator region and a vanadate-based Q-switch. Disclosed methods include hydrothermal growth techniques for the growth of differing layers on a host. A YVO4 host material can be doped in one region with a suitable active lasing ion and can be formed with another region that is doped with a saturable absorber. Regions can be formed with controlled thickness. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity to provide short pulses of high power emissions using high frequency pulse modes.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: November 15, 2016
    Assignee: Clemson University Research Foundation
    Inventors: Joseph W. Kolis, Colin D. McMillen, J. Matthew Mann
  • Publication number: 20160326667
    Abstract: Heterogeneous monolithic crystals that can include multiple regimes in a complex geometry are described. The crystals can be advantageously utilized in laser applications. The heterogeneous crystals can be created through growth of different regimes in interior voids formed in a seed crystal, which can in turn be homogeneous or heterogeneous. In one particular embodiment, a regime can be grown within a void of a seed crystal by use of a hydrothermal growth process. Formed crystals can be utilized in lasing and waveguiding applications, among others.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 10, 2016
    Inventors: Joseph W. Kolis, Colin D. McMillen
  • Publication number: 20160326666
    Abstract: Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing a garnet-based activator region and a garnet-based Q-switch. Disclosed methods include hydrothermal growth techniques for the growth of differing epitaxial layers on a host. A YAG host material can be doped in one region with a suitable activator ion for lasing and can be formed with another region that is doped with a saturable absorber to form the Q-switch. Regions can be formed with controlled thickness in conjunction. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity to provide short pulses of high power emissions using high frequency pulse modes.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 10, 2016
    Inventors: Joseph W. Kolis, Colin D. McMillen, J. Matthew Mann
  • Patent number: 9014228
    Abstract: Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing regions that are based upon the same host material but differ from one another according to some material feature such that they can perform various functions related to lasing. Disclosed methods include hydrothermal growth techniques for the growth of differing epitaxial layers on a host. A host material can be doped in one region with a suitable active lasing ion and can be formed with another region that is undoped and can act as an endcap, a waveguide cladding layer, or a substrate to provide strength and/or contact to a heat sink. Regions can be formed with controlled thickness in conjunction. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 21, 2015
    Assignee: Clemson University Research Foundation
    Inventors: Joseph W. Kolis, Colin D. McMillen, J. Matthew Mann, John M. Ballato
  • Patent number: 8834629
    Abstract: Single, acentric, rhombohedral, fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 16, 2014
    Assignee: Clemson University
    Inventors: Joseph W Kolis, Colin D. McMillen
  • Publication number: 20100189619
    Abstract: Single, acentric, rhombohedral, fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method.
    Type: Application
    Filed: March 1, 2010
    Publication date: July 29, 2010
    Inventors: Joseph W. Kolis, Colin D. McMillen
  • Patent number: 7731795
    Abstract: Single, acentric, rhombohedral, fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: June 8, 2010
    Assignee: Clemson University
    Inventors: Joseph W Kolis, Colin D. McMillen
  • Patent number: 7591896
    Abstract: Single, acentric, hexagonal, beryllium borate crystals having the formula Sr2Be2B2O7 and of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method. Alternate structures are formed by partially substituting the strontium ion with at least one other divalent metal ion.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 22, 2009
    Assignee: Clemson University
    Inventors: Joseph W Kolis, Colin D. McMillen, Henry G. Giesber, III
  • Patent number: 7563320
    Abstract: Scandium, yttrium, and lanthanide sesquioxide crystals having the formula Ln2O3, wherein Ln is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, with or without an activator ion, are made by a hydrothermal method for a variety of end-use applications.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 21, 2009
    Inventors: Joseph Kolis, Colin D. McMillen
  • Publication number: 20090151621
    Abstract: Scandium, yttrium, and lanthanide sesquioxide crystals having the formula Ln2O3, wherein Ln is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, with or without an activator ion, are made by a hydrothermal method for a variety of end-use applications
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Inventors: Joseph Kolis, Colin D. McMillen
  • Patent number: 7540917
    Abstract: Single, acentric, rhombohedral, potassium fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: June 2, 2009
    Assignee: Clemson University
    Inventors: Joseph W Kolis, Colin D. McMillen, Henry G. Giesber, III