Patents by Inventor Colin Hultengren

Colin Hultengren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9989146
    Abstract: A continuously variable transmission, a control system, and a method are provided. The control system and method are configured to learn a desired running pressure to be applied to a clutch that is lower than a pulley clamping pressure and higher than a pressure at which the clutch would slip (a clutch critical pressure), so that the clutch can act as a fuse to avoid pulley slip. A plurality of clutch slip tests are performed, each of which include decreasing pressure supplied to the clutch until a clutch slip occurs. Clutch slip data points are collected at the point of slip and used to determine a gain and an offset, where the gain is a clutch pressure versus clutch torque capacity gain, and the offset is a clutch pressure offset, which is used to determine the clutch critical pressure.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: June 5, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James L Abington, Chet Daavettila, Colin Hultengren, Timothy R Stockdale, Dongxu Li
  • Patent number: 9404572
    Abstract: A vehicle includes an engine, a transmission having a position-controlled clutch with a synchronizer sleeve and a synchronizer fork, an input member with an input speed, and an output member with an output speed, and a controller. The controller is programmed to register a slip-away condition when the input speed falls within a calibrated speed band and the output speed remains below a calibrated threshold speed. In response to the registered slip-away condition, the controller records a diagnostic code indicative of the synchronizer sleeve being disengaged, changes an engaged position of the synchronizer sleeve by a calibrated amount to thereby adapt the engaged position, and commands the clutch to disengage and the fork to move to a neutral position after increasing the engaged position. The controller also moves the synchronizer sleeve toward the adapted engaged position and applies the clutch when the synchronizer sleeve attains the adapted engaged position.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: August 2, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher Jay Weingartz, Colin Hultengren, Glenn W. Hoefflin
  • Patent number: 9056604
    Abstract: A vehicle includes an engine, transmission, engine control module (ECM), and transmission control module (TCM). The transmission includes an input member and an input clutch which selectively connects a crankshaft of the engine to the input member. The TCM identifies a target clutch torque of the input clutch during a creep maneuver of the vehicle, and communicates the identified target clutch torque to the ECM. The ECM maintains engine idle speed at a threshold level through the creep maneuver and a requested launch using the target clutch torque as a feed-forward term. A method includes identifying a target clutch torque of the input clutch during a creep maneuver, and communicating the identified target clutch torque to the ECM. The idle speed is maintained at a threshold level by the ECM through the creep maneuver and a detected launch using the target clutch torque as a feed-forward idle speed control term.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: June 16, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Ronald F. Lochocki, Jr., Krishnendu Kar, Colin Hultengren, Leon Cribbins
  • Patent number: 9002606
    Abstract: A system and method can control the dry dual clutch transmission (dDCT) of a vehicle. The method includes modifying a recorded torque-to-position (TTP) table based on a calculated clutch torque difference between a calculated clutch torque and a commanded clutch torque. The commanded clutch torque is provided by a transmission control module and is defined as a clutch torque sufficient to move the vehicle without applying the accelerator applier after the brake applier has been released. The calculated clutch torque is a function of the actual engine torque value, the engine inertia, and the engine acceleration.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: April 7, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Craig J. Hawkins, Colin Hultengren
  • Patent number: 8996266
    Abstract: A vehicle includes an engine, an engine control module (ECM), and a dual clutch transmission (DCT) assembly. The DCT assembly has first and second input clutches, first and second gear sets selectively connected to the engine via the respective first and second input clutches, and a transmission control module (TCM). In executing a launch control method, the TCM receives a launch request, receives an actual engine torque, and determines the inertia and acceleration of the engine. The TCM then calculates a clutch torque for the particular input clutch used for vehicle launch as a function of the actual engine torque and the product of the inertia and the acceleration, compares the calculated clutch torque to the commanded clutch torque, modifies a torque-to-position (TTP) table depending on the comparison result, and transmits a clutch position signal to the designated input clutch to command an apply position extracted from the TTP table.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Colin Hultengren, Craig J. Hawkins, Matthew D. Whitton, Crystal Nassouri, Jonathan P. Kish
  • Publication number: 20150088394
    Abstract: A system and method can control the dry dual clutch transmission (dDCT) of a vehicle. The method includes modifying a recorded torque-to-position (TTP) table based on a calculated clutch torque difference between a calculated clutch torque and a commanded clutch torque. The commanded clutch torque is provided by a transmission control module and is defined as a clutch torque sufficient to move the vehicle without applying the accelerator applier after the brake applier has been released. The calculated clutch torque is a function of the actual engine torque value, the engine inertia, and the engine acceleration.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Craig J. Hawkins, Colin Hultengren
  • Publication number: 20150032345
    Abstract: A vehicle includes an engine, transmission, engine control module (ECM), and transmission control module (TCM). The transmission includes an input member and an input clutch which selectively connects a crankshaft of the engine to the input member. The TCM identifies a target clutch torque of the input clutch during a creep maneuver of the vehicle, and communicates the identified target clutch torque to the ECM. The ECM maintains engine idle speed at a threshold level through the creep maneuver and a requested launch using the target clutch torque as a feed-forward term. A method includes identifying a target clutch torque of the input clutch during a creep maneuver, and communicating the identified target clutch torque to the ECM. The idle speed is maintained at a threshold level by the ECM through the creep maneuver and a detected launch using the target clutch torque as a feed-forward idle speed control term.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ronald F. Lochocki, JR., Krishnendu Kar, Colin Hultengren, Leon Cribbins
  • Patent number: 8825319
    Abstract: A method of controlling the performance of a vehicle from a stationary condition includes operating a vehicle powertrain in a creep mode following the disengagement of a driver-operated braking device; and operating the vehicle powertrain in a launch mode following an engagement of a driver-operated acceleration device subsequent to the disengagement of the driver-operated braking device. Operating a vehicle powertrain in a creep mode includes: applying a friction clutch to couple an engine crankshaft of the vehicle powertrain with an input shaft of the transmission; determining a torque command to accelerate the vehicle powertrain at a predetermined rate; providing the torque command to an engine controller to controllably increase the input torque to the transmission; and operating a closed loop engine speed control module to prevent the crankshaft speed from slowing below a predetermined engine idle speed.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher E. Whitney, Klaus Pochner, Colin Hultengren, Krishnedu Kar
  • Publication number: 20140195129
    Abstract: A vehicle includes an engine, an engine control module (ECM), and a dual clutch transmission (DCT) assembly. The DCT assembly has first and second input clutches, first and second gear sets selectively connected to the engine via the respective first and second input clutches, and a transmission control module (TCM). In executing a launch control method, the TCM receives a launch request, receives an actual engine torque, and determines the inertia and acceleration of the engine. The TCM then calculates a clutch torque for the particular input clutch used for vehicle launch as a function of the actual engine torque and the product of the inertia and the acceleration, compares the calculated clutch torque to the commanded clutch torque, modifies a torque-to-position (TTP) table depending on the comparison result, and transmits a clutch position signal to the designated input clutch to command an apply position extracted from the TTP table.
    Type: Application
    Filed: June 13, 2013
    Publication date: July 10, 2014
    Inventors: Colin Hultengren, Craig J. Hawkins, Matthew D. Whitton, Crystal Nassouri, Jonathan P. Kish
  • Patent number: 8612192
    Abstract: A vehicle simulation system includes a first simulation model that when executed simulates a software ring along with other software of a vehicle module. The vehicle simulation system further includes a second simulation model of the software ring. A bypass switch that has a first state and a second state. A bypass switching module switches the bypass switch between the first simulation model and the second simulation model based on a bypass signal and a ring enabling signal. A simulation control module executes code of a vehicle simulation model including software in-the-loop (SIL) testing of a selected one of the first simulation model and the second simulation model based on state of the bypass switch.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: December 17, 2013
    Inventors: Johan Larsson, Tobias Berndtson, Kenneth K. Lang, Xuefeng Tim Tao, Colin Hultengren, Michael A. Kropinski, Manmeet Mavi, Sriram Venkataramanan, David W. Wright
  • Publication number: 20130311055
    Abstract: A method of controlling the performance of a vehicle from a stationary condition includes operating a vehicle powertrain in a creep mode following the disengagement of a driver-operated braking device; and operating the vehicle powertrain in a launch mode following an engagement of a driver-operated acceleration device subsequent to the disengagement of the driver-operated braking device. Operating a vehicle powertrain in a creep mode includes: applying a friction clutch to couple an engine crankshaft of the vehicle powertrain with an input shaft of the transmission; determining a torque command to accelerate the vehicle powertrain at a predetermined rate; providing the torque command to an engine controller to controllably increase the input torque to the transmission; and operating a closed loop engine speed control module to prevent the crankshaft speed from slowing below a predetermined engine idle speed.
    Type: Application
    Filed: February 14, 2013
    Publication date: November 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher E. Whitney, Klaus Pochner, Colin Hultengren, Krishnendu Kar
  • Publication number: 20110288841
    Abstract: A vehicle simulation system includes a first simulation model that when executed simulates a software ring along with other software of a vehicle module. The vehicle simulation system further includes a second simulation model of the software ring. A bypass switch that has a first state and a second state. A bypass switching module switches the bypass switch between the first simulation model and the second simulation model based on a bypass signal and a ring enabling signal. A simulation control module executes code of a vehicle simulation model including software in-the-loop (SIL) testing of a selected one of the first simulation model and the second simulation model based on state of the bypass switch.
    Type: Application
    Filed: August 23, 2010
    Publication date: November 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Johan Larsson, Tobias Berndtson, Kenneth K. Lang, Xuefeng Tim Tao, Colin Hultengren, Michael A. Kropinski, Manmeet Mavi, Sriram Venkataramanan, David W. Wright