Patents by Inventor Colin J. Moore

Colin J. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170237297
    Abstract: A power supply with a multi-bridge topology configured to provide multiple different bridge topologies during operation. The power supply includes a plurality of half-bridge circuits connected to a controller. The controller can selectively configure the power supply between a plurality of different bridge topologies during operation by controlling the half-bridge circuit.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Benjamin C. Moes, Matthew J. Norconk, Joshua B. Taylor, Colin J. Moore
  • Patent number: 9735584
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the duty cycle of the switching between modes, the amount of energy received by the adaptive receiver may be controlled to communicate to the wireless power supply. This control is a form of adaptive resonance communication or Q control communication. Distortion can be reduced or eliminated by ramping between duty cycles with adjustment to intermediate duty cycle values.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 15, 2017
    Assignee: Access Business Group International LLC
    Inventors: Joshua B. Taylor, Colin J. Moore, Robert D. Gruich
  • Publication number: 20170172340
    Abstract: A beverage dispenser capable of preparing a variety of alternative types of beverages using different brewing parameters depending on the type of beverage. In one embodiment, the beverage dispenser is configured to use temperature, pressure and time parameters selected to provide optimal extraction for the type of beverage being prepared. In one embodiment, the beverage dispenser is intended to brew a variety of herbal teas with ingredients selected in accordance with traditional Chinese medicine. In one embodiment, the particle sizes of the various TCM ingredients are selected to provide optimized extraction in the beverage dispenser. The beverage dispenser may be configured to identify the type of beverage pod installed in the system and automatically prepare that beverage in accordance with optimized brewing parameters determined based on the ingredients and the particle sizes of those ingredients. The beverage dispenser may be capable of collecting user information and providing beverage recommendations.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 22, 2017
    Applicant: Access Business Group International LLC
    Inventors: David W. Baarman, Colin J. Moore, Cody D. Dean, Wei Yu, Qiang Han, Feng Wang, Chang Biao Chai, Xiao Juan Shen, Yan Liu
  • Patent number: 9680398
    Abstract: A power supply with a multi-bridge topology configured to provide multiple different bridge topologies during operation. The power supply includes a plurality of half-bridge circuits connected to a controller. The controller can selectively configure the power supply between a plurality of different bridge topologies during operation by controlling the half-bridge circuit.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: June 13, 2017
    Assignee: Access Business Group International LLC
    Inventors: Benjamin C. Moes, Matthew J. Norconk, Joshua B. Taylor, Colin J. Moore
  • Patent number: 9680311
    Abstract: A wireless power system for wirelessly transferring power to a remote device from a wireless power supply at a range of distances. Various embodiments are contemplated in which reflected impedance from the remote device can be reduced by reducing coupling outside the desired wireless power transfer path, allowing delivery of wireless power over a range of distances. For example, a system incorporating one or more of shielding, spacing, and offsetting may be used to reduce reflected impedance from the remote device. An adapter may also be used to extend the range of wireless power transfer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 13, 2017
    Assignee: Access Business Group International LLC
    Inventors: Kristen J. Blood, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, John James Lord
  • Publication number: 20170043189
    Abstract: An acoustic module with a transducer and a solid waveguide. The transducer and waveguide may be curved to focus the acoustic energy along a focal line. The transducer, the top surface of the waveguide and the bottom surface of the waveguide may extend along coaxial curves. The waveguide may include a recess closely receiving the transducer. The waveguide may include an integral skirt that provides a thermal mass. The acoustic module may include a space to accommodate thermal management options. For example, the acoustic module may include a heatsink, an active ventilation system and/or a phase change material. The ultrasound device may include a controller configured to perform a uniformity scan sweep during supply of operating power to the transducer. The uniformity scan sweep can extend through a frequency range that includes the operating point of the acoustic module and does not exceed an acceptable efficiency loss.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 16, 2017
    Inventors: Ronald L. Stoddard, Michael E. Miles, Matthew J. Norconk, Joshua K. Schwannecke, Joseph C. Van Den Brink, Colin J. Moore, A. Esai Umenei, Ryan D. Schamper, Mark S. Bartrum, Benjamin C. Moes, Karlis Vecziedins, Ziqi Wu, Mark C. Smith, Bradley J. Pippel, David S. Vachon
  • Patent number: 9520226
    Abstract: A contactless power supply is provided. The contactless power supply includes two or more primary coils for generating a region of cooperative magnetic flux generally therebetween. A portable device having a secondary coil can be positioned proximate this region of magnetic flux to receive wireless power from the contactless power supply. The spaced-apart primary coils can be wound in alternating directions about a common axis and driven in phase, or can be wound in a single direction about a common axis and driven approximately 180 degrees out of phase. The contactless power supply can include a plurality of primary coils in an adjustable array to accommodate multiple portable devices each with different secondary configurations and power consumption needs.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: December 13, 2016
    Assignee: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, David W. Baarman, Neil W. Kuyvenhoven, Benjamin C. Moes, Colin J. Moore
  • Patent number: 9496081
    Abstract: A contactless power supply is provided. The contactless power supply includes two or more primary coils for generating a region of cooperative magnetic flux generally therebetween. A portable device having a secondary coil can be positioned proximate this region of magnetic flux to receive wireless power from the contactless power supply. The spaced-apart primary coils can be wound in alternating directions about a common axis and driven in phase, or can be wound in a single direction about a common axis and driven approximately 180 degrees out of phase. The contactless power supply can include a plurality of primary coils in an adjustable array to accommodate multiple portable devices each with different secondary configurations and power consumption needs.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: November 15, 2016
    Assignee: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, David W. Baarman, Neil W. Kuyvenhoven, Benjamin C. Moes, Colin J. Moore
  • Publication number: 20160294445
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 9407332
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: August 2, 2016
    Assignee: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Publication number: 20160134154
    Abstract: An inductive wireless power system using an array of coils with the ability to dynamically select which coils are energized. The coil array can determine the position of and provide power to one or more portable electronic devices positioned on the charging surface. The coils in the array may be connected with series resonant capacitors so that regardless of the number of coils selected, the resonance point is generally maintained. The coil array can provide spatial freedom, decrease power delivered to parasitic loads, and increase power transfer efficiency to the portable electronic devices.
    Type: Application
    Filed: November 30, 2015
    Publication date: May 12, 2016
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Scott A. Mollema, William T. Stoner, JR., Benjamin C. Moes
  • Patent number: 9231411
    Abstract: An inductive wireless power system using an array of coils with the ability to dynamically select which coils are energized. The coil array can determine the position of and provide power to one or more portable electronic devices positioned on the charging surface. The coils in the array may be connected with series resonant capacitors so that regardless of the number of coils selected, the resonance point is generally maintained. The coil array can provide spatial freedom, decrease power delivered to parasitic loads, and increase power transfer efficiency to the portable electronic devices.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: January 5, 2016
    Assignee: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Scott A. Mollema, William T. Stoner, Jr., Benjamin C. Moes
  • Publication number: 20150266654
    Abstract: A dispenser or dispensing system. The dispenser can be a screw conveyor pill dispenser, tumbler pill dispenser, push-to-operate pill cap dispenser, twist-to-operate pill cap dispenser, or push-to-operate pill cap dispenser. The pill dispenser may include a pill dispenser control system that can interact with a personal device, such as a smart phone. The pill dispenser control system can implement communication with a personal device, pill identification, user identification and security, scheduling functions, and notifications. The pill dispenser can dispense pills manually, semi-automatically, or automatically.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: David W. Baarman, Colin J. Moore, Cody D. Dean, Ryan D. Schamper, Sean T. Eurich, Merdad Veiseh, Dan Parker, Joseph C. Van Den Brink, Richard J. Weber
  • Publication number: 20150244176
    Abstract: The present invention relates to a wireless power supply system including a remote device capable of both transmitting and receiving power wirelessly. The remote device includes a self-driven synchronous rectifier. The wireless power supply system may also include a wireless power supply configured to enter an OFF state in which no power, or substantially no power, is drawn, and to wake from the OFF state in response to receiving power from a remote device.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 27, 2015
    Inventors: Joseph C. Van Den Brink, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Neil W. Kuyvenhoven, David W. Baarman
  • Publication number: 20150207333
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 23, 2015
    Applicant: Access Business Group International LLC
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Publication number: 20150194814
    Abstract: The present invention relates to wireless power supplies adapted to supply power and communicate with one or more remote devices. The systems and methods of the present invention generally relate to a communication timing system that may ensure information being communicated does not overlap with that of another device, preventing data collisions and information from going undetected. With information being communicated in a way that addresses or avoids potential communication issues in multiple device systems, the wireless power supply may control operation to effectively supply wireless power.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 9, 2015
    Applicant: Access Business Group International LLC
    Inventors: Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Merdad Veiseh, Dale R. Liff, Mark A. Blaha, Jason L. Amistadi
  • Publication number: 20150108847
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the duty cycle of the switching between modes, the amount of energy received by the adaptive receiver may be controlled to communicate to the wireless power supply. This control is a form of adaptive resonance communication or Q control communication. Distortion can be reduced or eliminated by ramping between duty cycles with adjustment to intermediate duty cycle values.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: Access Business Group International LLC
    Inventors: Joshua B. Taylor, Colin J. Moore, Robert D. Gruich
  • Publication number: 20150102685
    Abstract: A wireless power system for wirelessly transferring power to a remote device from a wireless power supply at a range of distances. Various embodiments are contemplated in which reflected impedance from the remote device can be reduced by reducing coupling outside the desired wireless power transfer path, allowing delivery of wireless power over a range of distances. For example, a system incorporating one or more of shielding, spacing, and offsetting may be used to reduce reflected impedance from the remote device. An adapter may also be used to extend the range of wireless power transfer.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 16, 2015
    Inventors: Kristen J. Blood, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, John James Lord
  • Publication number: 20150035376
    Abstract: A wireless power transfer component with a selectively adjustable resonator circuit having a Q control subcircuit that varies the Q factor of the resonator circuit to control the amount of power relayed by the resonator circuit. The resonator circuit may be in the wireless power supply, the wireless power receiver, an intermediate resonator or any combination thereof. The resonator circuit may be actively configured based on a feedback circuit. The feedback circuit may sense a characteristic in the secondary circuit or elsewhere and actively operate the control subcircuit based on the sensed characteristic. The feedback circuit may cause the Q control subcircuit to change (reduce or increase) the Q factor when the sensed characteristic crosses a threshold value. The Q control subcircuit may include a variable resistor having a value that can be varied to adjust the Q factor of the resonator circuit.
    Type: Application
    Filed: January 23, 2013
    Publication date: February 5, 2015
    Inventors: David W. Baarman, Benjamin C. Moes, Joshua K. Schwannecke, Joshua B. Taylor, Neil W. Kuyvenhoven, Matthew J. Norconk, Colin J. Moore, John James Lord, Kristen J. Blood
  • Publication number: 20140368052
    Abstract: A wireless power receiver capable of receiving wireless power from close-coupled and mid-range wireless power supplies. The wireless power receiver includes a principal and supplemental receiver circuits. The principle receiver circuit is adjustable to operate in a close-coupled mode or a resonator mode. In close-coupled mode, the principle receiver circuit is coupled to the power input of a remote device and functions as the principle power source. In resonator-mode, the principle power circuit is electrically disconnected/isolated from the remote device and forms a closed resonant loop to function as a resonator that amplifies an electromagnetic field from a mid-range wireless power supply. The supplemental receiver circuit is coupled to the power input of the remote device and is configured to receive wireless power from the resonator and function as the power source when the principle receiver circuit is in the resonator mode.
    Type: Application
    Filed: January 4, 2013
    Publication date: December 18, 2014
    Applicant: Access Business Group International LLC
    Inventors: Matthew J. Norconk, Colin J. Moore, Joshua B. Taylor