Patents by Inventor Colin Jeffrey Green

Colin Jeffrey Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140487
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a machine-learned yield model. In particular, the machine-learned yield model can be trained or otherwise configured to receive and process feature data descriptive of objects perceived by the autonomous vehicle and/or the surrounding environment and, in response to receipt of the feature data, provide yield decisions for the autonomous vehicle relative to the objects. For example, a yield decision for a first object can describe a yield behavior for the autonomous vehicle relative to the first object (e.g., yield to the first object or do not yield to the first object). Example objects include traffic signals, additional vehicles, or other objects. The motion of the autonomous vehicle can be controlled in accordance with the yield decisions provided by the machine-learned yield model.
    Type: Application
    Filed: October 17, 2023
    Publication date: May 2, 2024
    Inventors: Colin Jeffrey Green, Wei Liu, David McAllister Bradley, Vijay Subramanian
  • Patent number: 11822337
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a machine-learned yield model. In particular, the machine-learned yield model can be trained or otherwise configured to receive and process feature data descriptive of objects perceived by the autonomous vehicle and/or the surrounding environment and, in response to receipt of the feature data, provide yield decisions for the autonomous vehicle relative to the objects. For example, a yield decision for a first object can describe a yield behavior for the autonomous vehicle relative to the first object (e.g., yield to the first object or do not yield to the first object). Example objects include traffic signals, additional vehicles, or other objects. The motion of the autonomous vehicle can be controlled in accordance with the yield decisions provided by the machine-learned yield model.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 21, 2023
    Assignee: UATC, LLC
    Inventors: Colin Jeffrey Green, Wei Liu, David McAllister Bradley, Vijay Subramanian
  • Patent number: 11781872
    Abstract: Various examples are directed to systems and methods for routing an autonomous vehicle. A vehicle autonomy system may generate first route data describing a first route for the autonomous vehicle to a first target location and control the autonomous vehicle using the first route data. The vehicle autonomy system may determine that the autonomous vehicle is within a threshold of the first target location and select a second target location associated with at least a second stopping location. The vehicle autonomy system may generate second route data describing a route extension of the first route from the first target location to the second target location and control the autonomous vehicle using the second route data.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: October 10, 2023
    Assignee: UATC, LLC
    Inventors: Bryan John Nagy, Xiaodong Zhang, Brett Bavar, Colin Jeffrey Green
  • Patent number: 11537127
    Abstract: Systems and methods for vehicle motion planning based on uncertainty are provided. A method can include obtaining scene data descriptive of one or more objects within a surrounding environment of the autonomous vehicle. The method can include determining one or more subproblems based at least in part on the scene data. In some implementation, each of the one or more subproblems can correspond to at least one object within the surrounding environment of the autonomous vehicle. The method can include generating one or more branching policies based at least in part on the one or more subproblems. In some implementations, each of the one or more branching policies can include scene data associated with the autonomous vehicle and one or more objects within the surrounding environment of the autonomous vehicle. The method can include determining one or more costs associated each of the one or more branching policies.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: December 27, 2022
    Assignee: UATC, LLC
    Inventors: Eric Lloyd Wilkinson, Michael Lee Phillips, David Mcallister Bradley, Zakary Warren Littlefield, Aum Jadhav, Utku Eren, Samuel Philip Marden, Colin Jeffrey Green
  • Publication number: 20220341740
    Abstract: Various examples are directed to systems and methods for routing an autonomous vehicle. A vehicle autonomy system may generate first route data describing a first route for the autonomous vehicle to a first target location and control the autonomous vehicle using the first route data. The vehicle autonomy system may determine that the autonomous vehicle is within a threshold of the first target location and select a second target location associated with at least a second stopping location. The vehicle autonomy system may generate second route data describing a route extension of the first route from the first target location to the second target location and control the autonomous vehicle using the second route data.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 27, 2022
    Inventors: Bryan John Nagy, Xiaodong Zhang, Brett Bavar, Colin Jeffrey Green
  • Patent number: 11397089
    Abstract: Various examples are directed to systems and methods for routing an autonomous vehicle. A vehicle autonomy system may generate first route data describing a first route for the autonomous vehicle to a first target location and control the autonomous vehicle using the first route data. The vehicle autonomy system may determine that the autonomous vehicle is within a threshold of the first target location and select a second target location associated with at least a second stopping location. The vehicle autonomy system may generate second route data describing a route extension of the first route from the first target location to the second target location and control the autonomous vehicle using the second route data.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: July 26, 2022
    Assignee: UATC, LLC
    Inventors: Bryan John Nagy, Xiaodong Zhang, Brett Bavar, Colin Jeffrey Green
  • Publication number: 20220171390
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a motion planning system that generates constraints as part of determining a motion plan for an autonomous vehicle (AV). In particular, a scenario generator within a motion planning system can generate constraints based on where objects of interest are predicted to be relative to an autonomous vehicle. A constraint solver can identify navigation decisions for each of the constraints that provide a consistent solution across all constraints. The solution provided by the constraint solver can be in the form of a trajectory path determined relative to constraint areas for all objects of interest. The trajectory path represents a set of navigation decisions such that a navigation decision relative to one constraint doesn't sacrifice an ability to satisfy a different navigation decision relative to one or more other constraints.
    Type: Application
    Filed: January 27, 2022
    Publication date: June 2, 2022
    Inventors: Michael Lee Phillips, Don Burnette, Kalin Vasilev Gochev, Somchaya Liemhetcharat, Harishma Dayanidhi, Eric Michael Perko, Eric Lloyd Wilkinson, Colin Jeffrey Green, Wei Liu, Anthony Joseph Stentz, David McAllister Bradley, Samuel Philip Marden
  • Publication number: 20220066461
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a machine-learned yield model. In particular, the machine-learned yield model can be trained or otherwise configured to receive and process feature data descriptive of objects perceived by the autonomous vehicle and/or the surrounding environment and, in response to receipt of the feature data, provide yield decisions for the autonomous vehicle relative to the objects. For example, a yield decision for a first object can describe a yield behavior for the autonomous vehicle relative to the first object (e.g., yield to the first object or do not yield to the first object). Example objects include traffic signals, additional vehicles, or other objects. The motion of the autonomous vehicle can be controlled in accordance with the yield decisions provided by the machine-learned yield model.
    Type: Application
    Filed: November 8, 2021
    Publication date: March 3, 2022
    Inventors: Colin Jeffrey Green, Wei Liu, David McAllister Bradley, Vijay Subramanian
  • Patent number: 11262756
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a motion planning system that generates constraints as part of determining a motion plan for an autonomous vehicle (AV). In particular, a scenario generator within a motion planning system can generate constraints based on where objects of interest are predicted to be relative to an autonomous vehicle. A constraint solver can identify navigation decisions for each of the constraints that provide a consistent solution across all constraints. The solution provided by the constraint solver can be in the form of a trajectory path determined relative to constraint areas for all objects of interest. The trajectory path represents a set of navigation decisions such that a navigation decision relative to one constraint doesn't sacrifice an ability to satisfy a different navigation decision relative to one or more other constraints.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 1, 2022
    Assignee: UATC, LLC
    Inventors: Michael Lee Phillips, Don Burnette, Kalin Vasilev Gochev, Somchaya Liemhetcharat, Harishma Dayanidhi, Eric Michael Perko, Eric Lloyd Wilkinson, Colin Jeffrey Green, Wei Liu, Anthony Joseph Stentz, David McAllister Bradley, Samuel Philip Marden
  • Publication number: 20220032961
    Abstract: The present disclosure is directed to altering vehicle paths. In particular, a computing system can access map data for a geographic area. The computing system can obtain target zone data describing a target zone within the geographic area. The computing system can determine an altered nominal path to traverse the target zone. The computing system can designate a portion of the altered nominal path as a designated action region associated with the target zone. The computing system can generate a longitudinal plan for an autonomous vehicle through the geographic area based on the altered nominal path. The computing system can generate a target velocity for one or more portions of the nominal path within the designated action region. The computing system can generate a trajectory for the autonomous vehicle based on the target velocity and the altered nominal path.
    Type: Application
    Filed: October 2, 2020
    Publication date: February 3, 2022
    Inventors: Chenggang Liu, David McAllister Bradley, Nitish Thatte, Colin Jeffrey Green
  • Patent number: 11175671
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a machine-learned yield model. In particular, the machine-learned yield model can be trained or otherwise configured to receive and process feature data descriptive of objects perceived by the autonomous vehicle and/or the surrounding environment and, in response to receipt of the feature data, provide yield decisions for the autonomous vehicle relative to the objects. For example, a yield decision for a first object can describe a yield behavior for the autonomous vehicle relative to the first object (e.g., yield to the first object or do not yield to the first object). Example objects include traffic signals, additional vehicles, or other objects. The motion of the autonomous vehicle can be controlled in accordance with the yield decisions provided by the machine-learned yield model.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 16, 2021
    Assignee: UATC, LLC
    Inventors: Colin Jeffrey Green, Wei Liu, David McAllister Bradley, Vijay Subramanian
  • Patent number: 11148668
    Abstract: The present disclosure is directed to a system for autonomous vehicle control for reverse motion. The system accesses a route with one or more route sections, the one or more route sections including a reverse driving section through an environment. The system accesses physical model data representing a position and actual orientation of the autonomous vehicle in the environment. The system modifies the physical model data to generate a simulated orientation for the autonomous vehicle based on a direction associated with the reverse driving section. The system transmits data associated with the reverse driving section of the accessed route and the modified physical model data to a motion planner. The system receives from the motion planner, one or more control signals for the autonomous vehicle. The system transmits the one or more control signals to a vehicle control system of the autonomous vehicle.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 19, 2021
    Assignee: UATC, LLC
    Inventor: Colin Jeffrey Green
  • Publication number: 20210107484
    Abstract: The present disclosure is directed to a system for autonomous vehicle control for reverse motion. The system accesses a route with one or more route sections, the one or more route sections including a reverse driving section through an environment. The system accesses physical model data representing a position and actual orientation of the autonomous vehicle in the environment. The system modifies the physical model data to generate a simulated orientation for the autonomous vehicle based on a direction associated with the reverse driving section. The system transmits data associated with the reverse driving section of the accessed route and the modified physical model data to a motion planner. The system receives from the motion planner, one or more control signals for the autonomous vehicle. The system transmits the one or more control signals to a vehicle control system of the autonomous vehicle.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 15, 2021
    Inventor: Colin Jeffrey Green
  • Publication number: 20210080955
    Abstract: Systems and methods for vehicle motion planning based on uncertainty are provided. A method can include obtaining scene data descriptive of one or more objects within a surrounding environment of the autonomous vehicle. The method can include determining one or more subproblems based at least in part on the scene data. In some implementation, each of the one or more subproblems can correspond to at least one object within the surrounding environment of the autonomous vehicle. The method can include generating one or more branching policies based at least in part on the one or more subproblems. In some implementations, each of the one or more branching policies can include scene data associated with the autonomous vehicle and one or more objects within the surrounding environment of the autonomous vehicle. The method can include determining one or more costs associated each of the one or more branching policies.
    Type: Application
    Filed: December 13, 2019
    Publication date: March 18, 2021
    Inventors: Eric Lloyd Wilkinson, Michael Lee Phillips, David McAllister Bradley, Zakary Warren Littlefield, Aum Jadhav, Utku Eren, Samuel Philip Marden, Colin Jeffrey Green
  • Patent number: 10852721
    Abstract: Systems and methods for autonomous vehicle testing are provided. In one example embodiment, a computer implemented method includes obtaining, by a computing system including one or more computing devices, simulated perception data indicative of one or more simulated states of at least one simulated object within a surrounding environment of an autonomous vehicle. The computer-implemented method includes determining, by the computing system, a motion of the autonomous vehicle based at least in part on the simulated perception data. The computer-implemented method includes causing, by the computing system, the autonomous vehicle to travel in accordance with the determined motion of the autonomous vehicle through the surrounding environment of the autonomous vehicle.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 1, 2020
    Assignee: UATC, LLC
    Inventors: Jessica Elizabeth Smith, Eric Michael Perko, Michael Lee Phillips, Colin Jeffrey Green, Randy Warner, Peter William Rander
  • Publication number: 20200018609
    Abstract: Various examples are directed to systems and methods for routing an autonomous vehicle. A vehicle autonomy system may generate first route data describing a first route for the autonomous vehicle to a first target location and control the autonomous vehicle using the first route data. The vehicle autonomy system may determine that the autonomous vehicle is within a threshold of the first target location and select a second target location associated with at least a second stopping location. The vehicle autonomy system may generate second route data describing a route extension of the first route from the first target location to the second target location and control the autonomous vehicle using the second route data.
    Type: Application
    Filed: October 29, 2018
    Publication date: January 16, 2020
    Inventors: Bryan John Nagy, Xiaodong Zhang, Brett Bavar, Colin Jeffrey Green
  • Publication number: 20190220015
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a motion planning system that generates constraints as part of determining a motion plan for an autonomous vehicle (AV). In particular, a scenario generator within a motion planning system can generate constraints based on where objects of interest are predicted to be relative to an autonomous vehicle. A constraint solver can identify navigation decisions for each of the constraints that provide a consistent solution across all constraints. The solution provided. by the constraint solver can be in the form of a trajectory path determined relative to constraint areas for all objects of interest. The trajectory path represents a set of navigation decisions such that a navigation decision relative to one constraint doesn't sacrifice an ability to satisfy a different navigation decision relative to one or more other constraints.
    Type: Application
    Filed: August 8, 2018
    Publication date: July 18, 2019
    Inventors: Michael Lee Phillips, Don Burnette, Kalin Vasilev Gochev, Somchaya Liemhetcharat, Harishma Dayanidhi, Eric Michael Perko, Eric Lloyd Wilkinson, Colin Jeffrey Green, Wei Liu, Anthony Joseph Stentz, David McAllister Bradley, Samuel Philip Marden
  • Publication number: 20190220016
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a motion planning system that generates constraints as part of determining a motion plan for an autonomous vehicle (AV). In particular, a constraint solver determines a multi-dimensional space for each phase of a plurality of different phases of a lane change maneuver. For each different phase, objects of interest interacting with first and second lanes of the nominal path can be determined and constraints can be respectively generated. A portion of the multi-dimensional space including corresponding constraints that applies to a respective timeframe associated with each phase can be determined. The respective portions of the multi-dimensional space including corresponding constraints for each phase of the plurality of different phases of the lane change maneuver can be combined to generate a multiplexed space through which a low-cost trajectory path can be determined.
    Type: Application
    Filed: August 8, 2018
    Publication date: July 18, 2019
    Inventors: Michael Lee Phillips, Don Burnette, Kalin Vasilev Gochev, Somchaya Liemhetcharat, Harishma Dayanidhi, Eric Michael Perko, Eric Lloyd Wilkinson, Colin Jeffrey Green, Wei Liu, Anthony Joseph Stentz, David McAllister Bradley, Samuel Philip Marden
  • Publication number: 20190107840
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a machine-learned yield model. In particular, the machine-learned yield model can be trained or otherwise configured to receive and process feature data descriptive of objects perceived by the autonomous vehicle and/or the surrounding environment and, in response to receipt of the feature data, provide yield decisions for the autonomous vehicle relative to the objects. For example, a yield decision for a first object can describe a yield behavior for the autonomous vehicle relative to the first object (e.g., yield to the first object or do not yield to the first object). Example objects include traffic signals, additional vehicles, or other objects. The motion of the autonomous vehicle can be controlled in accordance with the yield decisions provided by the machine-learned yield model.
    Type: Application
    Filed: June 8, 2018
    Publication date: April 11, 2019
    Inventors: Colin Jeffrey Green, Wei Liu, David McAllister Bradley, Vijay Subramanian
  • Patent number: 10019011
    Abstract: The present disclosure provides autonomous vehicle systems and methods that include or otherwise leverage a machine-learned yield model. In particular, the machine-learned yield model can be trained or otherwise configured to receive and process feature data descriptive of objects perceived by the autonomous vehicle and/or the surrounding environment and, in response to receipt of the feature data, provide yield decisions for the autonomous vehicle relative to the objects. For example, a yield decision for a first object can describe a yield behavior for the autonomous vehicle relative to the first object (e.g., yield to the first object or do not yield to the first object). Example objects include traffic signals, additional vehicles, or other objects. The motion of the autonomous vehicle can be controlled in accordance with the yield decisions provided by the machine-learned yield model.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 10, 2018
    Assignee: Uber Technologies, Inc.
    Inventors: Colin Jeffrey Green, Wei Liu, David McAllister Bradley, Vijay Subramanian