Patents by Inventor Colin McKinstrie

Colin McKinstrie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10547462
    Abstract: A system and method for generating copies of a signal includes a first radiation source configured for providing a plurality of pump radiation beams, a second radiation source configured for providing a signal radiation beam, and a second-order nonlinear optical medium to receive the plurality of pump radiation beams from the first radiation source and the signal radiation beam from the second radiation source and to emit a plurality of idlers, where the plurality of idlers are low-noise copies of the signal.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 28, 2020
    Assignee: Perspecta Labs Inc.
    Inventors: Colin McKinstrie, Anjali Agarwal
  • Patent number: 10050720
    Abstract: Devices and methods for converting an input electromagnetic signal to an output optical signal consisting of dual sidebands with equalized quantum-limited noise figures of about 3 dB are provided. For instance, a device includes an input for receiving the input electromagnetic signal and an output for delivering the output optical signal; and a non-linear material component connected between the input and the output of the device, the non-linear material component having a non-linear electric susceptibility, wherein the non-linear electric susceptibility of the non-linear material component is selected to mix the input signal with an optical pump signal to produce the output optical signal, wherein the output optical signal has sidebands corresponding to the input signal, and amplifying this optical signal in a phase-sensitive amplifier to produce an output optical signal with sidebands having equalized amplitudes and noise figures.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 14, 2018
    Assignee: Vencore Labs, Inc.
    Inventors: James Dailey, Anjali Agarwal, Paul Toliver, Colin McKinstrie, Nicholas Peters
  • Patent number: 9753353
    Abstract: A system and method for separating signal quadratures includes obtaining, by a parametric amplifier, an input signal, amplifying, by the parametric amplifier, the input signal to create an amplified signal and generating an idler. The idler is a conjugate image of the input signal. The system and method also include obtaining, by a frequency converter, the amplified signal and the conjugate image and converting the amplified signal and the conjugate image into a first output and a second output, where the first output includes a first signal quadrature and the second output includes a second output quadrature.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 5, 2017
    Assignee: Vencore Labs, Inc.
    Inventors: Colin McKinstrie, Anjali Agarwal
  • Publication number: 20170214474
    Abstract: Devices and methods for converting an input electromagnetic signal to an output optical signal consisting of dual sidebands with equalized quantum-limited noise figures of about 3 dB are provided. For instance, a device includes an input for receiving the input electromagnetic signal and an output for delivering the output optical signal; and a non-linear material component connected between the input and the output of the device, the non-linear material component having a non-linear electric susceptibility, wherein the non-linear electric susceptibility of the non-linear material component is selected to mix the input signal with an optical pump signal to produce the output optical signal, wherein the output optical signal has sidebands corresponding to the input signal, and amplifying this optical signal in a phase-sensitive amplifier to produce an output optical signal with sidebands having equalized amplitudes and noise figures.
    Type: Application
    Filed: May 27, 2016
    Publication date: July 27, 2017
    Inventors: James Dailey, Anjali Agarwal, Paul Toliver, Colin McKinstrie, Nicholas Peters
  • Patent number: 9698915
    Abstract: A system and method for processing an input signal includes a non-linear material component for receiving the signal. The non-linear material component is selected to mix the input signal with an optical pump wave to output an optical signal. The system also includes a parametric amplifier coupled to the non-linear material to obtain the optical signal and to amplify the optical signal to generate an amplified signal and an amplified idler which is a conjugate image of the amplified signal. The system also includes a frequency converter, to obtain the amplified signal and the amplified idler from the parametric amplifier and to convert the amplified signal and the amplified idler into a first output and a second output. The system also includes a first spectral sampling and processing apparatus to obtain and process the first output.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 4, 2017
    Assignee: Vencore Labs, Inc.
    Inventors: James Dailey, Anjali Agarwal, Paul Toliver, Colin McKinstrie, Nicholas Peters
  • Publication number: 20160357088
    Abstract: A system and method for separating signal quadratures includes obtaining, by a parametric amplifier, an input signal, amplifying, by the parametric amplifier, the input signal to create an amplified signal and generating an idler. The idler is a conjugate image of the input signal. The system and method also include obtaining, by a frequency converter, the amplified signal and the conjugate image and converting the amplified signal and the conjugate image into a first output and a second output, where the first output includes a first signal quadrature and the second output includes a second output quadrature.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 8, 2016
    Inventors: Colin McKinstrie, Anjali Agarwal
  • Publication number: 20160359569
    Abstract: A system and method for processing an input signal includes a non-linear material component for receiving the signal. The non-linear material component is selected to mix the input signal with an optical pump wave to output an optical signal. The system also includes a parametric amplifier coupled to the non-linear material to obtain the optical signal and to amplify the optical signal to generate an amplified signal and an amplified idler which is a conjugate image of the amplified signal. The system also includes a frequency converter, to obtain the amplified signal and the amplified idler from the parametric amplifier and to convert the amplified signal and the amplified idler into a first output and a second output. The system also includes a first spectral sampling and processing apparatus to obtain and process the first output.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 8, 2016
    Inventors: James Dailey, Anjali Agarwal, Paul Toliver, Colin McKinstrie, Nicholas Peters
  • Patent number: 8797639
    Abstract: A method and an apparatus for processing an optical signal are disclosed wherein an input optical signal having an amplitude profile is combined by means of Bragg scattering with a first pulsed pump signal having a first waveshape and a second pulsed pump signal having a second waveshape. The combined optical signal is input in a nonlinear optical material for frequency converting the input optical signal thereby obtaining an idler signal wherein the first pulsed pump signal co-propagates with the input optical signal and the second pulsed pump signal co-propagates with the idler signal. The idler signal produced has a peak amplitude proportional to the peak amplitude of the input optical signal and a shape corresponding to the second pump waveshape.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: August 5, 2014
    Assignee: Alcatel Lucent
    Inventor: Colin McKinstrie
  • Publication number: 20130155491
    Abstract: A method and an apparatus for processing an optical signal are disclosed wherein an input optical signal having an amplitude profile is combined by means of Bragg scattering with a first pulsed pump signal having a first waveshape and a second pulsed pump signal having a second waveshape. The combined optical signal is input in a nonlinear optical material for frequency converting the input optical signal thereby obtaining an idler signal wherein the first pulsed pump signal co-propagates with the input optical signal and the second pulsed pump signal co-propagates with the idler signal. The idler signal produced has a peak amplitude proportional to the peak amplitude of the input optical signal and a shape corresponding to the second pump waveshape.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventor: Colin McKinstrie
  • Patent number: 7724421
    Abstract: Phase-sensitive amplification (PSA), which is produced by degenerate four-wave mixing (FWM) in a randomly-birefringent fiber, has the potential to improve the performance of optical communication systems. Scalar FWM, which is driven by parallel pumps, is impaired by the generation of pump-pump and pump-signal harmonics, which limit the level, and modify the phase sensitivity, of the signal gain. In contrast, vector FWM, which is driven by perpendicular pumps, is not impaired by the generation of harmonics. Vector FWM produces PSA with the classical properties of a one-mode squeezing transformation.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: May 25, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Colin McKinstrie
  • Publication number: 20070216994
    Abstract: Phase-sensitive amplification (PSA), which is produced by degenerate four-wave mixing (FWM) in a randomly-birefringent fiber, has the potential to improve the performance of optical communication systems. Scalar FWM, which is driven by parallel pumps, is impaired by the generation of pump-pump and pump-signal harmonics, which limit the level, and modify the phase sensitivity, of the signal gain. In contrast, vector FWM, which is driven by perpendicular pumps, is not impaired by the generation of harmonics. Vector FWM produces PSA with the classical properties of a one-mode squeezing transformation.
    Type: Application
    Filed: May 17, 2007
    Publication date: September 20, 2007
    Applicant: LUCENT TECHNOLOGIES INC.
    Inventor: Colin McKinstrie
  • Publication number: 20070139762
    Abstract: Optical frequency conversion by four-wave mixing in a fiber is considered. If the frequencies and polarizations of the waves are chosen judiciously, four-wave mixing enables the translation of individual and entangled states, without the noise pollution associated with parametric amplification (modulation instability or phase conjugation) and with reduced noise from stimulated Raman scattering.
    Type: Application
    Filed: December 21, 2005
    Publication date: June 21, 2007
    Inventor: Colin Mckinstrie
  • Publication number: 20060285197
    Abstract: A method of and device for generating an amplified optical signal directly in an optical fiber by way of phase-sensitive amplification based on one or more four-wave mixing (FWM) processes. In one embodiment, an input signal and two pump waves are applied to a highly nonlinear fiber (HNLF). The input signal is amplified in the HNLF due to energy transfer from the pump waves to the input signal via a degenerate phase-conjugation (PC) process. In another embodiment, an input signal and first and second pump waves are applied to a first HNLF to generate, via a Bragg scattering (BS) process, an idler signal corresponding to the input signal. The second pump wave is then filtered out and the first pump wave, a third pump wave, and the input and idler signals are applied to a second HNLF, where they interact via a non-degenerate PC process to produce an amplified output signal.
    Type: Application
    Filed: June 16, 2005
    Publication date: December 21, 2006
    Inventor: Colin McKinstrie
  • Publication number: 20050146780
    Abstract: An optical parametric amplifier (OPA) driven with at least two pump waves. The pump waves may be configured such that the OPA produces uniform exponential gain over a range of wavelengths that extends, for example, at least 30 nm on either side of the average pump-wave wavelength. In addition, since the Brillouin scattering limit applies to each pump wave independently, substantially twice the amount of energy may be pumped into an OPA of the present invention compared to that in the corresponding single pump-wave OPA of the prior art. An OPA of the present invention may be used in a WDM communication system and configured for simultaneous signal amplification and wavelength conversion.
    Type: Application
    Filed: February 28, 2005
    Publication date: July 7, 2005
    Inventors: Colin McKinstrie, Stoian Radic
  • Publication number: 20050129412
    Abstract: A method of multiple-band switching using a multi-pump fiber parametric switch is demonstrated. The switching architecture combines parametric band amplification, wavelength conversion and selective signal conjugation, enabled by temporal control of at least one pump of the multi-pump parametric device. The switching speed of the present invention is limited by the rise time of the controlled pump(s).
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Inventors: Joseph Centanni, Andrew Chraplyvy, Alan Gnauck, Robert Jopson, Colin McKinstrie, Stojan Radic