Patents by Inventor Colin Meade

Colin Meade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945467
    Abstract: Example embodiments relate to identification of proxy calibration targets for a fleet of sensors. An example method includes collecting, using a sensor coupled to a vehicle, data about one or more objects within an environment of the vehicle. The sensor has been calibrated using a ground-truth calibration target. The method also includes identifying, based on the collected data, at least one candidate object, from among the one or more objects, to be used as a proxy calibration target for other sensors coupled to vehicles within a fleet of vehicles. Further, the method includes providing, by the vehicle, data about the candidate object for use by one or more vehicles within the fleet of vehicles.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 2, 2024
    Assignee: Waymo LLC
    Inventors: Volker Grabe, Colin Braley, Volodymyr Ivanchenko, Alexander Meade
  • Patent number: 11331456
    Abstract: An example medical device includes a balloon that is inflatable to an inflated configuration. The balloon includes a non-compliant layer coextruded on an inner layer, and an outer layer coextruded on the non-compliant layer. The non-compliant layer is configured to delaminate from the inner and the outer layers in the inflated configuration. The non-compliant layer may be configured to rupture in the inflated configuration. An example technique includes inflating the balloon to a predetermined pressure sufficient to rupture the non-compliant layer and insufficient to rupture both the inner and outer layers. The example technique further includes deflating the balloon, and introducing the balloon into a vasculature. Another example technique includes coextruding a non-compliant layer on an inner layer, coextruding an outer layer on the non-compliant layer, and forming a balloon from the inner layer, the non-compliant layer, and the outer layer.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Stephen Nash, Aram Jamous, Colin Meade
  • Publication number: 20200180246
    Abstract: An example medical device includes a balloon that is inflatable to an inflated configuration. The balloon includes a non-compliant layer coextruded on an inner layer, and an outer layer coextruded on the non-compliant layer. The non-compliant layer is configured to delaminate from the inner and the outer layers in the inflated configuration. The non-compliant layer may be configured to rupture in the inflated configuration. An example technique includes inflating the balloon to a predetermined pressure sufficient to rupture the non-compliant layer and insufficient to rupture both the inner and outer layers. The example technique further includes deflating the balloon, and introducing the balloon into a vasculature. Another example technique includes coextruding a non-compliant layer on an inner layer, coextruding an outer layer on the non-compliant layer, and forming a balloon from the inner layer, the non-compliant layer, and the outer layer.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Stephen Nash, Aram Jamous, Colin Meade
  • Patent number: 10596773
    Abstract: An example medical device includes a balloon that is inflatable to an inflated configuration. The balloon includes a non-compliant layer coextruded on an inner layer, and an outer layer coextruded on the non-compliant layer. The non-compliant layer is configured to delaminate from the inner and the outer layers in the inflated configuration. The non-compliant layer may be configured to rupture in the inflated configuration. An example technique includes inflating the balloon to a predetermined pressure sufficient to rupture the non-compliant layer and insufficient to rupture both the inner and outer layers. The example technique further includes deflating the balloon, and introducing the balloon into a vasculature. Another example technique includes coextruding a non-compliant layer on an inner layer, coextruding an outer layer on the non-compliant layer, and forming a balloon from the inner layer, the non-compliant layer, and the outer layer.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: March 24, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Stephen Nash, Aram Jamous, Colin Meade
  • Patent number: 10492823
    Abstract: A tissue-removing catheter includes an elongate body having proximal and distal end portions and a motor fixed to the distal end portion of the elongate body. A tissue-removing element is mounted on the motor to be driven in rotation by the motor about a drive axis. In some embodiments, the tissue-removing element includes a receptacle that receives the motor therein. The tissue-removing element can include a distal tip that extends distally beyond the motor to define the distal end of the catheter. The motor can be controlled using an actuator located outside the body. And in some embodiments, use of the catheter involves adjusting the rotational speed of the tissue-removing element using the actuator.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 3, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventors: Aram Jamous, Colin Meade, Grainne Carroll
  • Patent number: 10413709
    Abstract: A dilatation catheter includes a high-pressure balloon component comprising an inner balloon and an outer balloon. An interior of the inner balloon is in fluid communication with a lumen of the catheter for receiving inflation fluid therefrom. The outer balloon defines a separate interior within which the inner balloon is disposed. The outer balloon has a hole in a wall thereof for venting the interior of the outer balloon to ambient environment. Proximal necks of the inner and outer balloons are bonded to an outer shaft of the catheter and distal necks of the inner and outer balloons are bonded to an inner shaft of the catheter. In accordance with embodiments hereof, the interior of the outer balloon is not in fluid communication with the interior of the inner balloon, the lumen of the catheter or any other source of fluid from the catheter.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: September 17, 2019
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Aram Jamous, Colm Connolly, Colin Meade, Niall Plunkett
  • Publication number: 20190046228
    Abstract: A tissue-removing catheter includes an elongate body having proximal and distal end portions and a motor fixed to the distal end portion of the elongate body. A tissue-removing element is mounted on the motor to be driven in rotation by the motor about a drive axis. In some embodiments, the tissue-removing element includes a receptacle that receives the motor therein. The tissue-removing element can include a distal tip that extends distally beyond the motor to define the distal end of the catheter. The motor can be controlled using an actuator located outside the body. And in some embodiments, use of the catheter involves adjusting the rotational speed of the tissue-removing element using the actuator.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Aram Jamous, Colin Meade, Grainne Carroll
  • Publication number: 20180326190
    Abstract: An example medical device includes a balloon that is inflatable to an inflated configuration. The balloon includes a non-compliant layer coextruded on an inner layer, and an outer layer coextruded on the non-compliant layer. The non-compliant layer is configured to delaminate from the inner and the outer layers in the inflated configuration. The non-compliant layer may be configured to rupture in the inflated configuration. An example technique includes inflating the balloon to a predetermined pressure sufficient to rupture the non-compliant layer and insufficient to rupture both the inner and outer layers. The example technique further includes deflating the balloon, and introducing the balloon into a vasculature. Another example technique includes coextruding a non-compliant layer on an inner layer, coextruding an outer layer on the non-compliant layer, and forming a balloon from the inner layer, the non-compliant layer, and the outer layer.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Stephen Nash, Aram Jamous, Colin Meade
  • Publication number: 20180015265
    Abstract: A dilatation catheter includes a high-pressure balloon component comprising an inner balloon and an outer balloon. An interior of the inner balloon is in fluid communication with a lumen of the catheter for receiving inflation fluid therefrom. The outer balloon defines a separate interior within which the inner balloon is disposed. The outer balloon has a hole in a wall thereof for venting the interior of the outer balloon to ambient environment. Proximal necks of the inner and outer balloons are bonded to an outer shaft of the catheter and distal necks of the inner and outer balloons are bonded to an inner shaft of the catheter. In accordance with embodiments hereof, the interior of the outer balloon is not in fluid communication with the interior of the inner balloon, the lumen of the catheter or any other source of fluid from the catheter.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 18, 2018
    Inventors: Aram Jamous, Colm Connolly, Colin Meade, Niall Plunkett
  • Publication number: 20170354524
    Abstract: In some examples, a medical device includes a balloon inflatable to an inflated configuration. The balloon includes an outer layer coextruded on an inner layer. The outer layer has a maximum radial ratio that is lower than that of the inner layer.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 14, 2017
    Inventors: Aram Jamous, Colin Meade