Patents by Inventor Colin Nuckolls

Colin Nuckolls has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130285680
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 31, 2013
    Inventors: Sebastian Sorgenfrei, Kenneth Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Publication number: 20110275062
    Abstract: The disclosed subject matter provides a techniques for precisely and/or functionally cutting carbon nanotubes, e.g., single walled carbon nanotubes (“SWNTs”) and integrating a single nucleic acid molecule (e.g., a DNA molecule) into a gap formed into the carbon nanotubes. In one aspect, a method of fabricating a molecular electronic device includes disposing a SWNT on a base layer, forming a gap in the SWNT using a lithographic process, and disposing a single DNA strand across the gap so that each end of the nucleic acid contacts a gap termini. The disclosed subject matter also provides techniques for measuring the electrical properties (charge transport) of a DNA molecule which is integrated into an SWNT. Furthermore, a molecular electronic device including an SWNT with an integrated nucleic acid molecule is disclosed.
    Type: Application
    Filed: November 29, 2010
    Publication date: November 10, 2011
    Applicants: California Institute Of Technology, The Trustees of Columbia University In the City of New York
    Inventors: Xuefeng Guo, Colin Nuckolls, James Hone, Alon Gorodetsky, Jacqueline K. Barton
  • Publication number: 20110168562
    Abstract: The present invention provides a device for analyzing the composition of a heteropolymer comprising a carbon nanotube through which the heteropolymer is driven by electrophoresis. The carbon nanotube also serves as one electrode in a reading circuit. One end of the carbon nanotube is held in close proximity to a second electrode, and each end of the carbon nanotube is functionalized with flexibly-tethered chemical-recognition moieties, such that one will bind one site on the emerging polymer, and the second will bind another site in close proximity, generating an electrical signal between the two electrodes when the circuit is completed by the process of chemical recognition.
    Type: Application
    Filed: March 18, 2009
    Publication date: July 14, 2011
    Inventors: Colin Nuckolls, Jinyao Tang, Stuart Lindsay, Jin He, Peiming Zhang, Kevin Reinhart
  • Patent number: 7928432
    Abstract: The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: April 19, 2011
    Assignee: The Trustees Of Columbia University In The City Of New York
    Inventors: Colin Nuckolls, Xuefeng Guo, Philip Kim
  • Publication number: 20090027036
    Abstract: The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
    Type: Application
    Filed: June 13, 2008
    Publication date: January 29, 2009
    Applicant: The Trustees Of Columbia University In The City Of New York
    Inventors: Colin Nuckolls, Xuefeng Guo, Philip Kim, Shengxiong Xiao, Mathew Benjamin Myers
  • Publication number: 20090017571
    Abstract: The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
    Type: Application
    Filed: June 13, 2008
    Publication date: January 15, 2009
    Applicant: The Trustees Of Columbia University In The City Of New York
    Inventors: Colin Nuckolls, Xuefeng Guo, Philip Kim
  • Publication number: 20070292601
    Abstract: The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnected a cut SWNT is used as a sensor to detect a biological binding event.
    Type: Application
    Filed: December 4, 2006
    Publication date: December 20, 2007
    Inventors: Colin Nuckolls, Xuefeng Guo, Philip Kim, Shengxiong Xiao, Matthew Myers