Patents by Inventor Colin Wilson

Colin Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210298856
    Abstract: Certain aspects relate to systems and techniques for an input device for controlling a robotic surgical tool. The input device can include a first pair of opposing links and a second pair of opposing links. The first pair of opposing links and second pair of opposing links can be arranged radially symmetrically. The input device can be configured to control operation of the robotic surgical tool.
    Type: Application
    Filed: February 1, 2021
    Publication date: September 30, 2021
    Inventors: Joseph L. Diamond, Qingbin Zheng, Adam Richard Heard, Nathan B.J. Moore, Cory B. McBride, Colin A. Wilson
  • Patent number: 11060368
    Abstract: A well-logging system includes a first downhole tool coupled to a first cable for conveying the first downhole tool along a wellbore. A second downhole tool having a housing is coupled to a second cable for conveying the second downhole tool along the wellbore. The well-logging system includes a cable guide having a chassis structure coupled to the housing and a sleeve coupled to the chassis structure and disposed about the first cable. The first cable is configured to translate along the sleeve such that the sleeve facilitates guided movement of the first downhole tool relative to the second downhole tool.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: July 13, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Nicholas Fundytus, Alejandro Martinez Pereira, Colin Wilson, Richard Parker
  • Patent number: 10903725
    Abstract: A compact height torque sensing articulation axis assembly is disclosed herein having a torque sensor, an assembly mounting flange, a motor, a motor gearbox, a gearbox output shaft, an encoder, and a cable. The assembly may sense tension on robotic catheter pullwires in an articulating catheter and/or torque on a robotic output axis using the torque sensor. Disclosed embodiments may advantageously be used to achieve small, lightweight robotic catheter systems.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: January 26, 2021
    Assignee: Auris Health, Inc.
    Inventors: Travis Covington, Colin Wilson
  • Publication number: 20200123865
    Abstract: A well-logging system includes a first downhole tool coupled to a first cable for conveying the first downhole tool along a wellbore. A second downhole tool having a housing is coupled to a second cable for conveying the second downhole tool along the wellbore. The well-logging system includes a cable guide having a chassis structure coupled to the housing and a sleeve coupled to the chassis structure and disposed about the first cable. The first cable is configured to translate along the sleeve such that the sleeve facilitates guided movement of the first downhole tool relative to the second downhole tool.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 23, 2020
    Inventors: Nicholas Fundytus, Alejandro Martinez Pereira, Colin Wilson, Richard Parker
  • Publication number: 20200091799
    Abstract: A compact height torque sensing articulation axis assembly is disclosed herein having a torque sensor, an assembly mounting flange, a motor, a motor gearbox, a gearbox output shaft, an encoder, and a cable. The assembly may sense tension on robotic catheter pullwires in an articulating catheter and/or torque on a robotic output axis using the torque sensor. Disclosed embodiments may advantageously be used to achieve small, lightweight robotic catheter systems.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 19, 2020
    Inventors: Travis Covington, Colin Wilson
  • Patent number: 10454347
    Abstract: A compact height torque sensing articulation axis assembly is disclosed herein having a torque sensor, an assembly mounting flange, a motor, a motor gearbox, a gearbox output shaft, an encoder, and a cable. The assembly may sense tension on robotic catheter pullwires in an articulating catheter and/or torque on a robotic output axis using the torque sensor. Disclosed embodiments may advantageously be used to achieve small, lightweight robotic catheter systems.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 22, 2019
    Assignee: Auris Health, Inc.
    Inventors: Travis Covington, Colin Wilson
  • Patent number: 10370928
    Abstract: A technique provides protection against unwanted conditions in wellhead structures and other structures. According to the technique, a system provides a feed through in a wellhead structure or other type of structure. The feed through may accommodate a communication line routed therethrough. A closing device is positioned in the structure at a location to enable closing of the feed through via the closing device. Additionally, a condition-sensitive device is operatively engaged with the closing device to initiate actuation of the closing device once the condition-sensitive device is exposed to a predetermined condition. Upon exposure to the predetermined condition, the condition-sensitive device initiates closing of the feed through via the closing device.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 6, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: David Noakes, Robert Graham, Colin Wilson
  • Patent number: 10113902
    Abstract: A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: October 30, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Richard T. Coates, Douglas E. Miller, Arthur H. Hartog, Colin A. Wilson, Dominic Brady, Henry Menkiti, Francois M. Auzerais, Ian David Richard Bradford
  • Patent number: 10095280
    Abstract: A chassis includes a midplane defining a plurality of expansion sockets on one side and one or more motherboard sockets on the other. A modular motherboard is removably inserted in the chassis and engages the one or more motherboard sockets. An expansion card may engage with one or more of the motherboard sockets simultaneously. The expansion sockets are arranged in a coplanar and collinear manner to enable a planar expansion card to simultaneously insert within multiple expansion sockets. The motherboard allocates lanes to the expansion card in response to detecting a number of sockets occupied by the expansion card.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: October 9, 2018
    Assignee: Ciena Corporation
    Inventors: Raleigh Bettiga, Colin Wilson, Wayde Jaskela
  • Publication number: 20170312481
    Abstract: A compact height torque sensing articulation axis assembly is disclosed herein having a torque sensor, an assembly mounting flange, a motor, a motor gearbox, a gearbox output shaft, an encoder, and a cable. The assembly may sense tension on robotic catheter pullwires in an articulating catheter and/or torque on a robotic output axis using the torque sensor. Disclosed embodiments may advantageously be used to achieve small, lightweight robotic catheter systems.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 2, 2017
    Inventors: Travis Covington, Colin Wilson
  • Patent number: 9759836
    Abstract: A multiple sensor fiber optic sensing system includes an optical fiber having at least first fiber optic sensors and second fiber optic sensors deployed along its length. In response to an interrogating pulse, the first fiber optic sensors generate responses in a first optical spectrum window, and the second fiber optic sensors generate responses in a second, different optical spectrum window. The responses in the first optical spectrum window are measured in a first optical spectrum channel, and the responses in the second optical spectrum window are measure in a second, different optical spectrum channel and provide simultaneous indications of one or more parameters, such as temperature and pressure, in the environment in which the sensors are deployed.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: September 12, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yuehua Chen, Colin Wilson
  • Publication number: 20170083057
    Abstract: A chassis includes a midplane defining a plurality of expansion sockets on one side and one or more motherboard sockets on the other. A modular motherboard is removably inserted in the chassis and engages the one or more motherboard sockets. An expansion card may engage with one or more of the motherboard sockets simultaneously. The expansion sockets are arranged in a coplanar and collinear manner to enable a planar expansion card to simultaneously insert within multiple expansion sockets. The motherboard allocates lanes to the expansion card in response to detecting a number of sockets occupied by the expansion card.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 23, 2017
    Inventors: Raleigh Bettiga, Colin Wilson, Wayde Jaskela
  • Publication number: 20170038246
    Abstract: A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Inventors: Richard T. Coates, Douglas E. Miller, Arthur H. Hartog, Colin A. Wilson, Dominic Brady, Henry Menkiti, Francois M. Auzerais, Ian David Richard Bradford
  • Publication number: 20160320526
    Abstract: A multiple sensor fiber optic sensing system includes an optical fiber having at least first fiber optic sensors and second fiber optic sensors deployed along its length. In response to an interrogating pulse, the first fiber optic sensors generate responses in a first optical spectrum window, and the second fiber optic sensors generate responses in a second, different optical spectrum window. The responses in the first optical spectrum window are measured in a first optical spectrum channel, and the responses in the second optical spectrum window are measure in a second, different optical spectrum channel and provide simultaneous indications of one or more parameters, such as temperature and pressure, in the environment in which the sensors are deployed.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Yuehua Chen, Colin Wilson
  • Patent number: 9470807
    Abstract: A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 18, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Richard T. Coates, Douglas E. Miller, Arthur H. Hartog, Colin A. Wilson, Dominic Brady, Henry Menkiti, Francois M. Auzerais, Ian David Richard Bradford
  • Patent number: 9417103
    Abstract: A multiple sensor fiber optic sensing system includes an optical fiber having at least first fiber optic sensors and second fiber optic sensors deployed along its length. In response to an interrogating pulse, the first fiber optic sensors generate responses in a first optical spectrum window, and the second fiber optic sensors generate responses in a second, different optical spectrum window. The responses in the first optical spectrum window are measured in a first optical spectrum channel, and the responses in the second optical spectrum window are measure in a second, different optical spectrum channel and provide simultaneous indications of one or more parameters, such as temperature and pressure, in the environment in which the sensors are deployed.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 16, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: Yuehua Chen, Colin Wilson
  • Publication number: 20160102520
    Abstract: A technique provides protection against unwanted conditions in wellhead structures and other structures. According to the technique, a system provides a feed through in a wellhead structure or other type of structure. The feed through may accommodate a communication line routed therethrough. A closing device is positioned in the structure at a location to enable closing of the feed through via the closing device. Additionally, a condition-sensitive device is operatively engaged with the closing device to initiate actuation of the closing device once the condition-sensitive device is exposed to a predetermined condition. Upon exposure to the predetermined condition, the condition-sensitive device initiates closing of the feed through via the closing device.
    Type: Application
    Filed: May 30, 2014
    Publication date: April 14, 2016
    Inventors: David Noakes, Robert Graham, Colin Wilson
  • Patent number: 8887298
    Abstract: Aspects of the subject matter described herein relate to updating and validating documents secured cryptographically. In aspects, documents are encrypted to protect them from unauthorized access. An entity having write access to a document may create a new version of the document and sign the new version with a private key. Other entities may validate that the new version of the document was created by an authorized entity by using a public key available in security data associated with the version. The entities that are authorized to create a new version may change which security principals are allowed to create subsequent versions.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 11, 2014
    Assignee: Microsoft Corporation
    Inventor: Colin Wilson Reid
  • Patent number: 8887297
    Abstract: Aspects of the subject matter described herein relate to creating and validating cryptographically secured documents. In aspects, documents are encrypted to protect them from unauthorized access. An entity having namespace ownership rights may create a document in an authorized namespace and sign the document with a private key. Other entities may validate that the document was created by an authorized namespace owner by using a public key available in security data associated with a parent document of the document. For a root document, the public key may be available from a directory service. A namespace owner may change the namespace owner(s) that are allowed to create children of a document.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 11, 2014
    Assignee: Microsoft Corporation
    Inventor: Colin Wilson Reid
  • Patent number: 8857254
    Abstract: Methods and apparatus for acquiring acceleration waveform measurements while deploying a tool along a borehole. A conveyance and a sensor section are configured to deploy the sensor section in the borehole. At least one multi-axis receiver is configured to detect acceleration waveform signals while the sensor section is being deployed in the borehole.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 14, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Colin A. Wilson