Patents by Inventor Colleen Twitty

Colleen Twitty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094741
    Abstract: Disclosed herein are a method and apparatus for automated following behind a lead vehicle. The lead vehicle navigates a path from a starting point to a destination. The lead vehicle and the following vehicle are connected via V2V communication, allowing one or more following vehicles to detect the path taken by the lead vehicle. A computerized control system on the following vehicle (a Follow-the-Leader, or FTL, system) allows the following vehicle to mimic the behavior of the lead vehicle, with the FTL system controlling steering to guide the following vehicle along the path previously navigated by the lead vehicle. In some embodiments, the lead vehicle and following vehicle may both use Global Navigation Satellite System (GNSS) position coordinates. In some embodiments, the following vehicle may also have a system of sensors to maintain a gap between the following and lead vehicles.
    Type: Application
    Filed: April 25, 2023
    Publication date: March 21, 2024
    Applicant: Peloton Technology, Inc.
    Inventors: Shad Laws, Joshua Switkes, Art Gavrysh, Marc Tange, Mark Herbert, Colleen Twitty, Dean Hogle, Andrew Tamoney, Eric Monsler, Carlos Rosario, Oliver Bayley, Richard Pallo, Louis Donayre, Laurenz Laubinger, Brian Smartt, Joyce Tam, Brian Silverman, Tabitha Jarvis, Murad Bharwani, Steven Erlein, Austin Schuh, Mark Luckevich
  • Patent number: 11875686
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: January 16, 2024
    Assignee: Peloton Technology.
    Inventors: Colleen Twitty, Evan Nakano, Stephen Erlien, Joshua Switkes
  • Patent number: 11669108
    Abstract: Disclosed herein are a method and apparatus for automated following behind a lead vehicle. The lead vehicle navigates a path from a starting point to a destination. The lead vehicle and the following vehicle are connected via V2V communication, allowing one or more following vehicles to detect the path taken by the lead vehicle. A computerized control system on the following vehicle (a Follow-the-Leader, or FTL, system) allows the following vehicle to mimic the behavior of the lead vehicle, with the FTL system controlling steering to guide the following vehicle along the path previously navigated by the lead vehicle. In some embodiments, the lead vehicle and following vehicle may both use Global Navigation Satellite System (GNSS) position coordinates. In some embodiments, the following vehicle may also have a system of sensors to maintain a gap between the following and lead vehicles.
    Type: Grant
    Filed: July 6, 2019
    Date of Patent: June 6, 2023
    Assignee: Peloton Technology, Inc.
    Inventors: Shad Laws, Joshua Switkes, Art Gavrysh, Marc Tange, Mark Herbert, Colleen Twitty, Dean Hogle, Andrew Tamoney, Eric Monsler, Carlos Rosario, Oliver Bayley, Richard Pallo, Louis Donayre, Laurenz Laubinger, Brian Smartt, Joyce Tam, Brian Silverman, Tabitha Jarvis, Murad Bharwani, Steven Erlein, Austin Schuh, Mark Luckevich
  • Publication number: 20230114886
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Application
    Filed: May 23, 2022
    Publication date: April 13, 2023
    Applicant: Peloton Technology, Inc.
    Inventors: Colleen Twitty, Evan Nakano, Stephen Erlien, Joshua Switkes
  • Patent number: 11341856
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 24, 2022
    Assignee: PELOTON TECHNOLOGY, INC.
    Inventors: Colleen Twitty, Evan Nakano, Stephen Erlien, Joshua Switkes
  • Publication number: 20200402407
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Colleen Twitty, Evan Nakano, Stephen Erlien, Joshua Switkes
  • Patent number: 10762791
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 1, 2020
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P Switkes, Stephen M Erlien, Colleen Twitty, Evan Nakano
  • Publication number: 20200135032
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Application
    Filed: October 29, 2018
    Publication date: April 30, 2020
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P Switkes, Stephen Erlien, Colleen Twitty, Evan Nakano
  • Publication number: 20200057453
    Abstract: Disclosed herein are a method and apparatus for automated following behind a lead vehicle. The lead vehicle navigates a path from a starting point to a destination. The lead vehicle and the following vehicle are connected via V2V communication, allowing one or more following vehicles to detect the path taken by the lead vehicle. A computerized control system on the following vehicle (a Follow-the-Leader, or FTL, system) allows the following vehicle to mimic the behavior of the lead vehicle, with the FTL system controlling steering to guide the following vehicle along the path previously navigated by the lead vehicle. In some embodiments, the lead vehicle and following vehicle may both use Global Navigation Satellite System (GNSS) position coordinates. In some embodiments, the following vehicle may also have a system of sensors to maintain a gap between the following and lead vehicles.
    Type: Application
    Filed: July 6, 2019
    Publication date: February 20, 2020
    Applicant: Peloton Technology, Inc.
    Inventors: Shad Laws, Joshua Switkes, Art Gavrysh, Marc Tange, Mark Herbert, Colleen Twitty, Dean Hogle, Andrew Tamoney, Eric Monsler, Carlos Rosario, Oliver Bayley, Richard Pallo, Louis Donayre, Laurenz Laubinger, Brian Smartt, Joyce Tam, Brian Silverman, Tabitha Jarvis, Murad Bharwani, Steven Erlein, Austin Schuh, Mark Luckevich
  • Patent number: 8412155
    Abstract: Systems and methods to accelerate transactions made via mobile communications. In one aspect, a system includes: a data storage facility to store information associated with past payment transactions and an interchange coupled with the data storage facility. The interchange includes a common format processor and a plurality of converters to interface with a plurality of controllers. The converters are configured to communicate with the controllers in different formats, and to communicate with the common format processor in a common format. The common format processor includes a risk engine and a transaction engine. The risk engine estimates a risk in a billing process; and the transaction engine determines whether or not to notify a merchant of the predicted result of billing based on the suggestion from the risk engine and/or other information, such as the status of the wireless telecommunications network.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 2, 2013
    Assignee: Boku, Inc.
    Inventors: Philip McCanna, Nesrin Umur, Jonathan Mason, Colleen Twitty, Jang Kim
  • Publication number: 20120157042
    Abstract: Systems and methods to accelerate transactions made via mobile communications. In one aspect, a system includes: a data storage facility to store information associated with past payment transactions and an interchange coupled with the data storage facility. The interchange includes a common format processor and a plurality of converters to interface with a plurality of controllers. The converters are configured to communicate with the controllers in different formats, and to communicate with the common format processor in a common format. The common format processor includes a risk engine and a transaction engine. The risk engine estimates a risk in a billing process; and the transaction engine determines whether or not to notify a merchant of the predicted result of billing based on the suggestion from the risk engine and/or other information, such as the status of the wireless telecommunications network.
    Type: Application
    Filed: July 28, 2011
    Publication date: June 21, 2012
    Applicant: BOKU, INC.
    Inventors: Philip McCanna, Nesrin Umur, Jonathan Mason, Colleen Twitty, Jang Kim