Patents by Inventor CONNOR S. EDEL

CONNOR S. EDEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11284830
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 29, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qing Lou, Meredith E. Stone, Qingguo Zeng, Jeffrey B. Adair, Connor S. Edel, Ping Jia, Kevin R. Ponziani, Brian P. George, Ryan M. Bokan, Matthew J. Sabo, Vladimir A. Turovskiy, Ketal C. Patel, Charulatha Ramanathan
  • Patent number: 10806359
    Abstract: One or more non-transitory computer-readable media have instructions executable by a processor and programmed to perform a method. The method includes analyzing the electrical data to locate one or more wave front lines over a given time interval. The electrical data represents electrophysiological signals distributed across a cardiac envelope for one or more time intervals. A respective trajectory is determined for each wave end of each wave front line that is located across the cardiac envelope over the given time interval. A set of connected trajectories are identified based on a duration that the trajectories are connected to each other by a respective wave front line during the given time interval. A connectivity association is characterized for the trajectories in the set of connected trajectories.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: October 20, 2020
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Qing Lou, Ryan M. Bokan, Ping Jia, Connor S. Edel, Charulatha Ramanathan
  • Publication number: 20200163570
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: QING LOU, MEREDTH E. STONE, QINGGUO ZENG, JEFFREY B. ADAIR, CONNOR S. EDEL, PING JIA, KEVIN R. PONZIANI, BRIAN P. GEORGE, RYAN M. BOKAN, MATTHEW J. SABO, VLADIMIR A. TUROVSKIY, KETAL C. PATEL, CHARULATHA RAMANATHAN
  • Patent number: 10575749
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 3, 2020
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qing Lou, Meredith E. Stone, Qingguo Zeng, Jeffrey B. Adair, Connor S. Edel, Ping Jia, Kevin R. Ponziani, Brian P. George, Ryan M. Bokan, Matthew J. Sabo, Vladimir A. Turovskiy, Ketal C. Patel, Charulatha Ramanathan
  • Patent number: 10376173
    Abstract: An example method includes performing amplitude-based detection to determine location of R-peaks for a plurality of electrograms. The method also includes performing wavelet-based detection to determine location of R-peaks for the plurality of electrograms. The method also includes adjusting the location of the R-peaks determined by the wavelet-based detection of R-peaks based on the location of R-peaks determined by the amplitude-based detection of R-peaks. The method also includes storing, in memory, R-peak location data to specify R-peak locations for the plurality of electrograms based on the adjusting.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 13, 2019
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Brian P. George, Meredith E. Stone, Qingguo Zeng, Qing Lou, Connor S. Edel, Ping Jia, Jeffrey B. Adair, Vladimir A. Turovskiy, Matthew J. Sabo, Ryan M. Bokan, Ketal C. Patel, Charulatha Ramanathan, John E. Anderson, Andrew E. Hoover, Cheng Yao
  • Publication number: 20180310850
    Abstract: One or more non-transitory computer-readable media have instructions executable by a processor and programmed to perform a method. The method includes analyzing the electrical data to locate one or more wave front lines over a given time interval. The electrical data represents electrophysiological signals distributed across a cardiac envelope for one or more time intervals. A respective trajectory is determined for each wave end of each wave front line that is located across the cardiac envelope over the given time interval. A set of connected trajectories are identified based on a duration that the trajectories are connected to each other by a respective wave front line during the given time interval. A connectivity association is characterized for the trajectories in the set of connected trajectories.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: QINGGUO ZENG, QING LOU, RYAN M. BOKAN, PING JIA, CONNOR S. EDEL, CHARULATHA RAMANATHAN
  • Publication number: 20170319088
    Abstract: An example method includes performing amplitude-based detection to determine location of R-peaks for a plurality of electrograms. The method also includes performing wavelet-based detection to determine location of R-peaks for the plurality of electrograms. The method also includes adjusting the location of the R-peaks determined by the wavelet-based detection of R-peaks based on the location of R-peaks determined by the amplitude-based detection of R-peaks. The method also includes storing, in memory, R-peak location data to specify R-peak locations for the plurality of electrograms based on the adjusting.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 9, 2017
    Inventors: BRIAN P. GEORGE, MEREDITH E. STONE, QINGGUO ZENG, QING LOU, CONNOR S. EDEL, PING JIA, JEFFREY B. ADAIR, VLADIMIR A. TUROVSKIY, MATTHEW J. SABO, RYAN M. BOKAN, KETAL C. PATEL, CHARULATHA RAMANATHAN, JOHN E. ANDERSON, ANDREW E. HOOVER, CHENG YAO
  • Publication number: 20170319089
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 9, 2017
    Inventors: QING LOU, MEREDITH E. STONE, QINGGUO ZENG, JEFFREY B. ADAIR, CONNOR S. EDEL, PING JIA, KEVIN R. PONZIANI, BRIAN P. GEORGE, RYAN M. BOKAN, MATTHEW J. SABO, VLADIMIR A. TUROVSKIY, KETAL C. PATEL, CHARULATHA RAMANATHAN