Patents by Inventor Conor James Walsh
Conor James Walsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240387863Abstract: A cathode configured for a solid-state battery includes a body having grains of inorganic material sintered to one another, wherein the grains comprise lithium. A thickness of the body is from 3 ?m to 100 ?m. The first major surface and the second major surface have an unpolished granular profile such that the profile includes grains protruding outward from the respective major surface with a height of at least 25 nm and no more than 150 ?m relative to recessed portions of the respective major surface at boundaries between the respective grains.Type: ApplicationFiled: May 10, 2024Publication date: November 21, 2024Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Jennifer Anella Heine, Thomas Dale Ketcham, Gary Edward Merz, Eric Lee Miller, Zhen Song, Cameron Wayne Tanner, Conor James Walsh
-
Patent number: 12076903Abstract: Screw elements, extrusion apparatus, and methods of manufacturing honeycomb bodies are described herein. A segment for a ceramic batch screw extruder machine has at least one pump and mix screw element. The pump and mix screw element has a pitch, a diameter, and a pitch to diameter ratio of 0.8 to 2.6.Type: GrantFiled: October 3, 2018Date of Patent: September 3, 2024Assignee: Corning IncorporatedInventors: David Robertson Treacy, Jr., Conor James Walsh, Stephanie Stoughton Wu
-
Publication number: 20240239010Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: ApplicationFiled: February 8, 2024Publication date: July 18, 2024Inventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Patent number: 12021189Abstract: A cathode configured for a solid-state battery includes a body having grains of inorganic material sintered to one another, wherein the grains comprise lithium. A thickness of the body is from 3 ?m to 100 ?m. The first major surface and the second major surface have an unpolished granular profile such that the profile includes grains protruding outward from the respective major surface with a height of at least 25 nm and no more than 150 ?m relative to recessed portions of the respective major surface at boundaries between the respective grains.Type: GrantFiled: May 30, 2023Date of Patent: June 25, 2024Assignee: CORNING INCORPORATEDInventors: Michael Edward Badding, Jacqueline Leslie Brown, Jennifer Anella Heine, Thomas Dale Ketcham, Gary Edward Merz, Eric Lee Miller, Zhen Song, Cameron Wayne Tanner, Conor James Walsh
-
Patent number: 11919196Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: GrantFiled: July 25, 2023Date of Patent: March 5, 2024Assignee: Corning IncorporatedInventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Publication number: 20230364828Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: ApplicationFiled: July 25, 2023Publication date: November 16, 2023Inventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Publication number: 20230307701Abstract: A cathode configured for a solid-state battery includes a body having grains of inorganic material sintered to one another, wherein the grains comprise lithium. A thickness of the body is from 3 ?m to 100 ?m. The first major surface and the second major surface have an unpolished granular profile such that the profile includes grains protruding outward from the respective major surface with a height of at least 25 nm and no more than 150 ?m relative to recessed portions of the respective major surface at boundaries between the respective grains.Type: ApplicationFiled: May 30, 2023Publication date: September 28, 2023Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Jennifer Anella Heine, Thomas Dale Ketcham, Gary Edward Merz, Eric Lee Miller, Zhen Song, Cameron Wayne Tanner, Conor James Walsh
-
Patent number: 11745385Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: GrantFiled: January 10, 2023Date of Patent: September 5, 2023Assignee: Corning IncorporatedInventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Publication number: 20230158708Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: ApplicationFiled: January 10, 2023Publication date: May 25, 2023Inventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Publication number: 20230081830Abstract: A cooling apparatus for an extruder includes a supply line configured to receive bulk coolant from a supply circuit via an inlet. The supply line delivers supply coolant to the extruder along a flow path. A return line communicates expelled coolant from the extruder, and a circulation line connects the supply line to the return line. The circulation line supplies a recirculated portion of the expelled coolant to the supply line and mixes the bulk coolant with the recirculated portion of the expelled coolant forming the supply coolant. A bypass line connects the supply line to the return line, and a flow control valve connects one of the supply line and the return line to the bypass line. A proportion of the expelled coolant to the bulk coolant forming the supply coolant is adjusted by the flow control valve to control the temperature of the supply coolant.Type: ApplicationFiled: September 7, 2022Publication date: March 16, 2023Inventors: Andrew Paul Courtney, William Jay Hurlburt, Shawn Michael Huyler, David Allan Leister, Patrick Ronald Shane, Conor James Walsh
-
Patent number: 11577427Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: GrantFiled: May 6, 2022Date of Patent: February 14, 2023Assignee: Corning IncorporatedInventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Patent number: 11571832Abstract: Kneading elements, extrusion apparatus, and methods of manufacturing honeycomb bodies are described herein. A kneading element (1802) has an inner surface (1804) defining an opening (1806) configured to couple the kneading element (1802) to a shaft (46,48). The kneading element (1802) also has a continuous closed curve elliptical outer surface (1808). The opening (1806) has an axis (1814) that is off-center with respect to a geometric center (1816) of the kneading element (1802) as viewed in a transverse plane perpendicular to the axis.Type: GrantFiled: October 3, 2018Date of Patent: February 7, 2023Assignee: Corning IncorporatedInventors: Conor James Walsh, Stephanie Stoughton Wu
-
Publication number: 20220297344Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: ApplicationFiled: May 6, 2022Publication date: September 22, 2022Inventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Publication number: 20220274883Abstract: According to embodiments, a batch mixture includes inorganic components, a non-polar carbon chain lubricant, and an organic surfactant having a polar head. The non-polar carbon chain lubricant and the organic surfactant are present in concentrations satisfying the relationship: B(C1(d+d0)+C2(f+f0))=SC, where: d0+d is an amount of non-polar carbon chain lubricant in percent by weight of the inorganic components, by super addition; f0+f is an amount of organic surfactant in percent by weight of the inorganic components, by super addition; B is a scaling factor; C1 is a scaling factor of the concentration of the non-polar carbon chain lubricant; and C2 is a scaling factor of the concentration of the organic surfactant. Embodiments provide that 3.6?SC?14.Type: ApplicationFiled: May 16, 2022Publication date: September 1, 2022Inventors: Daniel Edward McCauley, Maxime Moreno, Conor James Walsh, Stephanie Stoughton Wu
-
Publication number: 20220278364Abstract: Electrolyte for a solid-state battery includes a body having grains of inorganic material sintered to one another, where the grains include lithium. The body is thin, has little porosity by volume, and has high ionic conductivity.Type: ApplicationFiled: May 19, 2022Publication date: September 1, 2022Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Jennifer Anella Heine, Thomas Dale Ketcham, Gary Edward Merz, Eric Lee Miller, Zhen Song, Cameron Wayne Tanner, Conor James Walsh
-
Patent number: 11411245Abstract: Electrolyte for a solid-state battery includes a body having grains of inorganic material sintered to one another, where the grains include lithium. The body is thin, has little porosity by volume, and has high ionic conductivity.Type: GrantFiled: August 7, 2019Date of Patent: August 9, 2022Assignee: Corning IncorporatedInventors: Michael Edward Badding, Zhen Song, Jacqueline Leslie Brown, Jennifer Anella Heine, Thomas Dale Ketcham, Gary Edward Merz, Eric Lee Miller, Cameron Wayne Tanner, Conor James Walsh
-
Patent number: 11351697Abstract: A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.Type: GrantFiled: October 2, 2019Date of Patent: June 7, 2022Assignee: Corning IncorporatedInventors: Michael Edward Badding, William Joseph Bouton, Lanrik Wayne Kester, Thomas Dale Ketcham, Andrew Peter Kittleson, Dale Charles Marshall, Gary Edward Merz, Eric Lee Miller, Emmanuel Chima Okpara, Conor James Walsh
-
Patent number: 11220021Abstract: A system (100) and method to control rheology of ceramic pre-cursor batch during extrusion is described herein. An extrusion system (100) comprises an extruder (122) with an input port (144) configured to feed ceramic pre-cursor batch into a first section (120) of an extruder barrel and a discharge port configured to extrude a ceramic pre-cursor extrudate (172) out of the extruder barrel downstream of the input port (144). A liquid injector (210) is configured to inject liquid into the ceramic pre-cursor batch. A sensor (106) is configured to detect a rheology characteristic of the ceramic pre-cursor batch. A controller (108) is configured (i) to receive the rheology characteristic from the sensor (106), (ii) compare the rheology characteristic to a predetermined rheology value of the ceramic pre-cursor batch, and (iii) generate a command based on the comparison. A liquid regulator (110) is configured to receive the command and adjust liquid flow to the liquid injector (210) based on the command.Type: GrantFiled: August 3, 2017Date of Patent: January 11, 2022Assignee: Corning IncorporatedInventors: Christopher John Malarkey, Conor James Walsh
-
Publication number: 20210162625Abstract: An extruder that includes: an extruder barrel with an inlet end and a discharge end; a rotatable screw element disposed axially within the barrel with a screw inlet end proximate the inlet end and a screw discharge end proximate the discharge end of the barrel; a shaft extending axially through the screw element and comprising a central bore with an opening proximate to the inlet end of the barrel and extending through the shaft to a closed terminal end; and a coolant delivery conduit extending axially within the bore comprising a coolant inlet end proximate to the inlet end of the barrel and a coolant discharge end. The closed terminal end of the bore is located at a predetermined distance upstream from the screw discharge end. Further, the coolant discharge end is located within the bore and proximate to the closed terminal end of the bore.Type: ApplicationFiled: July 11, 2019Publication date: June 3, 2021Inventor: Conor James Walsh
-
Patent number: 10946551Abstract: In-line inspection and control system to in-situ monitor an extrudate during extrusion. A light beam illuminates a line on the outside circumference of the extrudate skin recording the curvature. A master profile of the illuminated defect-free skin is recorded and compared to successive monitoring of the illuminated skin. Differences from the comparison indicate skin and/or shape defects. A real-time feedback to automatically adjust process control hardware reduces or eliminates the skin and shape defects based on the monitoring and comparison.Type: GrantFiled: November 20, 2015Date of Patent: March 16, 2021Assignee: Corning IncorporatedInventors: Joseph Henry Citriniti, Conor James Walsh