Patents by Inventor Conor L. Myhrvold
Conor L. Myhrvold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240122080Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.Type: ApplicationFiled: October 9, 2023Publication date: April 11, 2024Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, JR., Muriel Y. Ishikawa, Victoria Y.H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
-
Patent number: 11785866Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.Type: GrantFiled: February 5, 2019Date of Patent: October 10, 2023Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Jr., Muriel Y. Ishikawa, Victoria Y. H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
-
Patent number: 11294344Abstract: An apparatus, method, computer program product, and/or system are described that determine an event, actuate a cushioning element in response to the determining the event, the cushioning element including one or more tension-bearing members, and dissipate at least some of an energy associated with a collision based on deforming at least one of the tension-bearing members during the collision, the deforming including substantially inelastically stretching the at least one of the tension-bearing members. Other example embodiments are also provided relating to actuatable cushioning elements.Type: GrantFiled: November 1, 2019Date of Patent: April 5, 2022Assignee: Deep Science, LLCInventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, Jr., Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Publication number: 20200310376Abstract: In one embodiment, a particular state of a body is sensed. In response to the sensing, at least one action is taken to modulate a projected adverse interaction between the body or a portion thereof and at least one object in the environment of the body. An apparatus, methods and computer program product, and system are described that enable a first subset of actuatable cushioning elements for a first time period, enable a second subset of actuatable cushioning elements for a second time period, determine an event, and actuate, based on a time the event is determined, at least one of the first and the second subsets of actuatable cushioning elements to provide cushioning support for an object. Other example embodiments are also provided relating to actuatable cushioning elements.Type: ApplicationFiled: November 1, 2019Publication date: October 1, 2020Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, JR., Lowell L. Wood, JR., Victoria Y.H. Wood
-
Publication number: 20200028063Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.Type: ApplicationFiled: February 5, 2019Publication date: January 23, 2020Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Muriel Y. Ishikawa, Victoria Y.H. Wood, David R. Smith, John Brian Pendry, Charels Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
-
Patent number: 10539941Abstract: Disclosed embodiments include methods, computer program products, and systems. Given by way of example only and not of limitation, in various embodiments a method includes: determining an event; actuating a cushioning element in response to the determining the event, the cushioning element including one or more tension-bearing members; and dissipating at least some of an energy associated with a collision based on deforming at least one of the tension-bearing members during the collision, the deforming including substantially inelastically stretching the at least one of the tension-bearing members.Type: GrantFiled: April 22, 2016Date of Patent: January 21, 2020Assignee: Deep Science, LLCInventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron A. Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Publication number: 20170369383Abstract: A traceable cement mixture includes a volume of cementitious material, a plurality of taggants disposed within the volume of cementitious material according to a taggant mix ratio that is specified based on a quality of the cementitious material, and a volume of an additional material mixed with the volume of cementitious material according an additional material mix ratio.Type: ApplicationFiled: September 1, 2017Publication date: December 28, 2017Applicant: Elwha LLCInventors: Jeffrey A. Bowers, Bran Ferren, W. Daniel Hillis, Roderick A. Hyde, Jordin T. Kare, Cameron A. Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, Thomas J. Nugent,, Jr., Tony S. Pan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood,, Jr.
-
Publication number: 20170277158Abstract: In one embodiment, a particular state of a body is sensed. In response to the sensing, at least one action is taken to modulate a projected adverse interaction between the body or a portion thereof and at least one object in the environment of the body. An apparatus, methods and computer program product, and system are described that enable a first subset of actuatable cushioning elements for a first time period, enable a second subset of actuatable cushioning elements for a second time period, determine an event, and actuate, based on a time the event is determined, at least one of the first and the second subsets of actuatable cushioning elements to provide cushioning support for an object. Other example embodiments are also provided relating to actuatable cushioning elements.Type: ApplicationFiled: April 22, 2016Publication date: September 28, 2017Applicant: Deep Science, LLCInventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron A. Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, Lowell L. Wood, JR., Victoria Y.H. Wood
-
Patent number: 9751812Abstract: A traceable cement mixture includes a volume of cementitious material and a taggant disposed within the volume of cementitious material. The taggant includes data relating to a characteristic of the volume of cementitious material.Type: GrantFiled: May 30, 2014Date of Patent: September 5, 2017Assignee: Elwha LLCInventors: Jeffrey A. Bowers, Bran Ferren, W. Daniel Hillis, Roderick A. Hyde, Jordin T. Kare, Cameron A. Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, Thomas J. Nugent, Jr., Tony S. Pan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood, Jr.
-
Publication number: 20170175510Abstract: A drill for excavating a bore in the earth includes a steerable boring tool configured to excavate a bore and sensors coupled to the boring tool. The sensors are spaced apart from one another at multiple azimuthal locations around the steerable boring tool and the sensors are configured to detect a mineral property in the earth adjacent the steerable boring tool.Type: ApplicationFiled: March 6, 2017Publication date: June 22, 2017Applicant: Elwha LLCInventors: Michael H. Baym, Terry Briggs, Clark J. Gilbert, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
-
Publication number: 20170122035Abstract: A kinetic penetrator includes a tubular body having a first end and a second end, a nose coupled to the first end of the tubular body, the nose configured to penetrate a ground surface and subsurface materials of a subterranean ground volume, a retrieval system including a tether, a collector coupled to at least one of the nose and the tubular body, and a sample compartment configured to interface with the collector. The sample compartment is releasably coupled to at least one of the tubular body, the nose, and the collector, and the tether is coupled to the sample compartment and is configured to facilitate removal thereof from the subterranean ground volume.Type: ApplicationFiled: January 9, 2017Publication date: May 4, 2017Applicant: Elwha LLCInventors: Michael H. Baym, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood,, JR., Victoria Y.H. Wood
-
Patent number: 9605806Abstract: A method of transporting liquefied breathing gases in underground mines includes providing a conduit system that extends within a mine shaft to a work space below ground where the conduit system includes an outlet positioned in the work space, delivering liquefied breathing gases through the conduit system, and vaporizing the liquefied breathing gases at the outlet of the conduit system.Type: GrantFiled: July 19, 2012Date of Patent: March 28, 2017Assignee: Elwha LLCInventors: Michael H. Baym, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Patent number: 9587482Abstract: A drill for excavating a bore in the earth includes a steerable primary boring tool, a secondary boring tool and a sensor. The steerable primary boring tool is configured to excavate a primary bore. The secondary boring tool is configured to excavate a plurality of side bores that extend outward from the primary bore at a plurality of azimuthal locations around the primary bore. The sensor is configured to detect a mineral property in the earth adjacent each of the side bores.Type: GrantFiled: September 29, 2014Date of Patent: March 7, 2017Assignee: Elwha LLCInventors: Michael H. Baym, Terry Briggs, Clark J. Gilbert, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Patent number: 9562396Abstract: A retrievable kinetic penetrator includes a tubular body having a first end and a second end, a nose coupled to the first end of the tubular body, and a retrieval system. The nose is configured to penetrate a ground surface and subsurface materials of a subterranean ground volume. The retrieval system includes a tether coupled to the tubular body and is configured to facilitate recovery of the tubular body from the subterranean ground volume.Type: GrantFiled: August 22, 2013Date of Patent: February 7, 2017Assignee: Elwha LLCInventors: Michael H. Baym, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Publication number: 20170016324Abstract: A system for fragmenting material includes an energy source, an acoustic transmitter coupled to the energy source and having a unit acoustic source configured to emit an acoustic wave through a volume of ground material, a signal reflecting device, and a controller configured to engage the acoustic transmitter such that the unit acoustic source emits an acoustic locating wave toward the signal reflecting device. The controller is configured to engage the acoustic transmitter such that the unit acoustic source emits the acoustic wave toward a target location, and the acoustic wave is configured to fracture the volume of ground material at the target location.Type: ApplicationFiled: September 29, 2016Publication date: January 19, 2017Inventors: Michael H. Baym, Terry Briggs, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
-
Publication number: 20170001201Abstract: A method of separating a mineral bearing particle from a fluid includes providing a housing along a surface of the fluid, moving the housing along the surface of the fluid with a driver, and applying a radio-frequency electromagnetic field to the fluid with a generator. Applying the radio-frequency electromagnetic field includes increasing a temperature of the mineral bearing particle contained within the fluid to a boiling point of the fluid whereby the mineral bearing particle transfers heat into the fluid.Type: ApplicationFiled: September 16, 2016Publication date: January 5, 2017Applicant: Elwha LLCInventors: Michael H. Baym, Terry Briggs, Clark J. Gilbert, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood,, JR., Victoria Y.H. Wood
-
Patent number: 9480991Abstract: An apparatus for separating a mineral from a liquid including a housing and a fluid having a mineral bearing particle and contained within the housing. The apparatus further includes a generator configured to apply a radio-frequency electromagnetic field to the mineral bearing particle. The field produces a temperature increase within a portion of the mineral bearing particle and the mineral bearing particle transfers heat into the fluid, the heated fluid imposing motion-inducing forces on the particle.Type: GrantFiled: October 12, 2012Date of Patent: November 1, 2016Assignee: Elwha LLCInventors: Michael H. Baym, Terry Briggs, Clark J. Gilbert, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Patent number: 9468932Abstract: A system for fragmenting material includes an energy source, an acoustic transmitter, and a controller. The acoustic transmitter is coupled to the energy source and includes a unit acoustic source configured to emit an acoustic wave through a volume of ground material. The controller is coupled to the acoustic transmitter and is configured to engage the unit acoustic source such that the acoustic wave fractures the volume of ground material at a target location.Type: GrantFiled: December 13, 2013Date of Patent: October 18, 2016Assignee: Elwha LLCInventors: Michael H. Baym, Terry Briggs, Robert Dunne, Clark J. Gilbert, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Conor L. Myhrvold, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
-
Publication number: 20150344376Abstract: A traceable cement mixture includes a volume of cementitious material and a taggant disposed within the volume of cementitious material. The taggant includes data relating to a characteristic of the volume of cementitious material.Type: ApplicationFiled: May 30, 2014Publication date: December 3, 2015Inventors: Jeffrey A. Bowers, Bran Ferren, W. Daniel Hillis, Roderick A. Hyde, Jordin T. Kare, Cameron A. Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, Thomas J. Nugent,, Jr., Tony S. Pan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood,, Jr.
-
Publication number: 20150069656Abstract: The embodiments disclosed herein relate to construction systems, assemblies, and methods. The construction systems can include concrete dispensing assemblies. The concrete dispensing assemblies can be configured to dispense a plurality of discrete units. The concrete dispensing assemblies can also be configured to simultaneously dispense two or more concrete mixtures. One or more dispensing parameter may be controllable, for example, by a computer control system. Additives and/or curing agents may also be used. Exemplary curing agents include carbon dioxide containing materials.Type: ApplicationFiled: September 6, 2013Publication date: March 12, 2015Inventors: Jeffrey A. Bowers, Bran Ferren, W. Daniel Hillis, Roderick A. Hyde, Cameron A. Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood, JR.