Patents by Inventor Conor P. Puls
Conor P. Puls has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240332301Abstract: Integrated circuit structures having sub-fin isolation, and methods of fabricating integrated circuit structures having sub-fin isolation, are described. For example, an integrated circuit structure includes a channel structure, and an oxide sub-fin structure over the channel structure, the oxide sub-fin structure including silicon and oxygen and aluminum.Type: ApplicationFiled: April 2, 2023Publication date: October 3, 2024Inventors: Willy RACHMADY, Caleb BARRETT, Prashant WADHWA, Chun-Kuo HUANG, Conor P. PULS, Daniel James HARRIS, Giorgio MARIOTTINI, Patrick MORROW
-
Publication number: 20240222447Abstract: An integrated circuit includes a first device, and a laterally adjacent second device. The first device includes a first body of semiconductor material extending laterally from a first source or drain region, a first gate structure on the first body, and a first contact extending vertically upward from the first source or drain region. The second device includes a second body of semiconductor material extending laterally from a second source or drain region, a second gate structure on the second body, and a second contact extending vertically upward from the second source or drain region. A gate cut structure including dielectric material is laterally between the first gate structure and the second gate structure, and also laterally between the first contact and the second contact. In some examples, a third contact extends laterally from the first contact to the second contact and passes over the gate cut structure.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Reken Patel, Conor P. Puls, Krishna Ganesan, Akitomo Matsubayashi, Diana Ivonne Paredes, Sunzida Ferdous, Brian Greene, Lateef Uddin Syed, Kyle T. Horak, Lin Hu, Anupama Bowonder, Swapnadip Ghosh, Amritesh Rai, Shruti Subramanian, Gordon S. Freeman
-
Patent number: 12014996Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.Type: GrantFiled: June 26, 2020Date of Patent: June 18, 2024Assignee: Intel CorporationInventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
-
Publication number: 20240145410Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.Type: ApplicationFiled: January 4, 2024Publication date: May 2, 2024Applicant: Intel CorporationInventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
-
Publication number: 20230420360Abstract: Integrated circuit structures having recessed self-aligned deep boundary vias are described. For example, an integrated circuit structure includes a plurality of gate lines. A plurality of trench contacts extends over a plurality of source or drain structures, individual ones of the plurality of trench contacts alternating with individual ones of the plurality of gate lines. A backside metal routing layer is extending beneath one or more of the plurality of gate lines and beneath one or more of the plurality of trench contacts. A conductive structure couples the backside metal routing layer to one of the one or more of the plurality of trench contacts. The conductive structure includes a pillar portion in contact with the one of the one or more of the plurality of trench contacts, the pillar portion on a line portion, the line portion in contact with and extending along the backside metal routing layer.Type: ApplicationFiled: June 27, 2022Publication date: December 28, 2023Inventors: Mohit HARAN, Sukru YEMENICIOGLU, Pratik PATEL, Charles H. WALLACE, Leonard P. GULER, Conor P. PULS, Makram ABD EL QADER, Tahir GHANI
-
Publication number: 20230317563Abstract: Embodiments disclosed herein include a via structure and methods of forming the via structure. In an embodiment, the via structure comprises a substrate and an opening through the substrate. In an embodiment, the opening has a first portion and a second portion under the first portion. In an embodiment, the via structure further comprises a lining on sidewalls of the first portion of the opening, and a via filling the opening. In an embodiment, the via has a first region with a first width and a second region with a second width, wherein the first width is smaller than the second width.Type: ApplicationFiled: March 31, 2022Publication date: October 5, 2023Inventors: Payam AMIN, Tofizur RAHMAN, Bozidar MARINKOVIC, Santhosh Kumar KODURI, Tugba KOKER AYKOL, Jayeeta SEN, David BENNETT, Conor P. PULS, Clay MORTENSEN, Leslie L. CHAN, Hoang DOAN, Dolly Natalia RUIZ AMADOR
-
Publication number: 20230317594Abstract: Embodiments disclosed herein include a semiconductor device. In an embodiment, the semiconductor device comprises a substrate and a transistor over the substrate. In an embodiment, the transistor comprises a source, a gate, and a drain. In an embodiment, the semiconductor device further comprises a first metal layer above the transistor, where the first metal layer comprises, a source metal coupled to the source, a drain metal coupled to the drain, and a gate metal coupled to the gate. In an embodiment, the source metal, the drain metal, and the gate metal are parallel conductive lines. In an embodiment, a backside via passes through the substrate, and a contact metal in the first metal layer is coupled to the backside via. In an embodiment, the contact metal is oriented orthogonal to the source metal.Type: ApplicationFiled: March 31, 2022Publication date: October 5, 2023Inventors: Tao CHU, Minwoo JANG, Aurelia WANG, Conor P. PULS, Lin HU, Jaladhi MEHTA, Brian GREENE, Chung-Hsun LIN, Walid M. HAFEZ, Paul PACKAN
-
Patent number: 11690211Abstract: Described herein are IC devices that include TFT based memory arrays on both sides of a layer of logic devices. An example IC device includes a support structure (e.g., a substrate) on which one or more logic devices may be implemented. The IC device further includes a first memory cell on one side of the support structure, and a second memory cell on the other side of the support structure, where each of the first memory cell and the second memory cell includes a TFT as an access transistor. Providing TFT based memory cells on both sides of a layer of logic devices allows significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, significantly reducing the footprint area of the memory array with a given memory cell density.Type: GrantFiled: October 27, 2021Date of Patent: June 27, 2023Assignee: Intel CorporationInventors: Wilfred Gomes, Mauro J. Kobrinsky, Conor P. Puls, Kevin Fischer, Bernhard Sell, Abhishek A. Sharma, Tahir Ghani
-
Publication number: 20230197538Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques for providing a hermetic seal for a layer of transistors with metal on both sides that are on a substrate. The layer of transistors may be within a die or within a portion of a die. The hermetic seal may include a hermetic layer on one side of the layer of transistors and a hermetic layer on the opposite side of the transistors. In embodiments, one or more metal walls may be constructed through the transistor layer, with metal rings placed around either side of the layer of transistors and hermetically coupling with the two hermetic layers. Other embodiments may be described and/or claimed.Type: ApplicationFiled: December 20, 2021Publication date: June 22, 2023Inventors: Mohammad Enamul KABIR, Conor P. PULS, Tofizur RAHMAN, Keith ZAWADZKI, Hannes GREVE
-
Publication number: 20230197779Abstract: Integrated circuit structures having backside power delivery are described. In an example, an integrated circuit structure includes a device layer within a cell boundary, the device layer having a front side and a backside, and the device layer including a source or drain structure. A source or drain trench contact structure is on the front side of the device layer. The source or drain trench contact structure is coupled to the source or drain structure. A metal layer is on the backside of the device layer. A via structure couples the metal layer to the source or drain trench contact structure. The via structure is overlapping and parallel with a cell row boundary of the cell boundary.Type: ApplicationFiled: December 20, 2021Publication date: June 22, 2023Inventors: Marni NABORS, Mauro J. KOBRINSKY, Conor P. PULS, Kevin FISCHER, Curtis TSAI
-
Publication number: 20220415892Abstract: Integrated circuit (IC) devices with stacked two-level backend memory, and associated systems and methods, are disclosed. An example IC device includes a front end of line (FEOL) layer, including frontend transistors, and a back end of line (BEOL) layer above the FEOL layer. The BEOL layer includes a first memory layer with memory cells of a first type, and a second memory layer with memory cells of a second type. The first memory layer may be between the FEOL layer and the second memory layer, thus forming stacked backend memory. Stacked backend memory architecture may allow significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density. Implementing two different types of backend memory may advantageously increase functionality and performance of backend memory.Type: ApplicationFiled: June 25, 2021Publication date: December 29, 2022Applicant: INTEL CORPORATIONInventors: Wilfred Gomes, Abhishek A. Sharma, Conor P. Puls, Mauro J. Kobrinsky, Kevin J. Fischer, Derchang Kau, Albert Fazio, Tahir Ghani
-
Publication number: 20220399334Abstract: Integrated circuit structures having backside self-aligned conductive via bars, and methods of fabricating integrated circuit structures having backside self-aligned conductive via bars, are described. For example, an integrated circuit structure includes a first sub-fin structure over a first stack of nanowires. A second sub-fin structure is over a second stack of nanowires. A first gate electrode is around the first stack of nanowires. A second gate electrode is around the second stack of nanowires. A conductive trench contact structure is between the first gate electrode and the second gate electrode. A conductive via bar is on the conductive trench contact structure, the conductive via bar having a backside surface co-planar with a backside surface of the first and second sub-fin structures.Type: ApplicationFiled: June 14, 2021Publication date: December 15, 2022Inventors: Leonard P. GULER, Conor P. PULS, Charles H. WALLACE, Tahir GHANI
-
Publication number: 20220399445Abstract: Conductive via bars self-aligned to gate ends are described. In an example, an integrated circuit structure includes a plurality of gate structures. The integrated circuit structure also includes a plurality of dielectric spacers, a corresponding one of the plurality of dielectric spacers laterally surrounding a corresponding one of the plurality of gate structures. A plurality of conductive trench contact structures is alternating with the plurality of gate structures. A conductive via bar is along ends of the plurality of gate structures and ends of the plurality of conductive trench contact structures, wherein the plurality of dielectric spacers is between the ends of the plurality of gate structures and the conductive via bar.Type: ApplicationFiled: June 14, 2021Publication date: December 15, 2022Inventors: Leonard P. GULER, Tahir GHANI, Charles H. WALLACE, Conor P. PULS, Walid M. HAFEZ, Sairam SUBRAMANIAN, Justin S. SANDFORD, Saurabh MORARKA, Sean PURSEL, Mohammad HASAN
-
Publication number: 20220393013Abstract: Gate-all-around integrated circuit structures having pre-spacer-deposition wide cut gates are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first gate stack is over the first vertical arrangement of horizontal nanowires, and a second gate stack is over the second vertical arrangement of horizontal nanowires. An end of the second gate stack is spaced apart from an end of the first gate stack by a gap. A first dielectric gate spacer is along an end of the first gate stack in the gap. A second dielectric gate spacer is along an end of the second gate stack in the gap. A dielectric material is between and in lateral contact with the first dielectric gate spacer and the second dielectric gate spacer.Type: ApplicationFiled: June 4, 2021Publication date: December 8, 2022Inventors: Leonard P. GULER, Sairam SUBRAMANIAN, Conor P. PULS, Charles H. WALLACE, Tahir GHANI
-
Publication number: 20220045065Abstract: Described herein are IC devices that include TFT based memory arrays on both sides of a layer of logic devices. An example IC device includes a support structure (e.g., a substrate) on which one or more logic devices may be implemented. The IC device further includes a first memory cell on one side of the support structure, and a second memory cell on the other side of the support structure, where each of the first memory cell and the second memory cell includes a TFT as an access transistor. Providing TFT based memory cells on both sides of a layer of logic devices allows significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, significantly reducing the footprint area of the memory array with a given memory cell density.Type: ApplicationFiled: October 27, 2021Publication date: February 10, 2022Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Conor P. Puls, Kevin Fischer, Bernhard Sell, Abhishek A. Sharma, Tahir Ghani
-
Patent number: 11239238Abstract: Described herein are IC devices that include TFT based memory arrays on both sides of a layer of logic devices. An example IC device includes a support structure (e.g., a substrate) on which one or more logic devices may be implemented. The IC device further includes a first memory cell on one side of the support structure, and a second memory cell on the other side of the support structure, where each of the first memory cell and the second memory cell includes a TFT as an access transistor. Providing TFT based memory cells on both sides of a layer of logic devices allows significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, significantly reducing the footprint area of the memory array with a given memory cell density.Type: GrantFiled: October 29, 2019Date of Patent: February 1, 2022Assignee: Intel CorporationInventors: Wilfred Gomes, Mauro J. Kobrinsky, Conor P. Puls, Kevin Fischer, Bernhard Sell, Abhishek A. Sharma, Tahir Ghani
-
Publication number: 20210407932Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.Type: ApplicationFiled: June 26, 2020Publication date: December 30, 2021Applicant: Intel CorporationInventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
-
Publication number: 20210125990Abstract: Described herein are IC devices that include TFT based memory arrays on both sides of a layer of logic devices. An example IC device includes a support structure (e.g., a substrate) on which one or more logic devices may be implemented. The IC device further includes a first memory cell on one side of the support structure, and a second memory cell on the other side of the support structure, where each of the first memory cell and the second memory cell includes a TFT as an access transistor. Providing TFT based memory cells on both sides of a layer of logic devices allows significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, significantly reducing the footprint area of the memory array with a given memory cell density.Type: ApplicationFiled: October 29, 2019Publication date: April 29, 2021Applicant: Intel CorporationInventors: Wilfred Gomes, Mauro J. Kobrinsky, Conor P. Puls, Kevin Fischer, Bernhard Sell, Abhishek A. Sharma, Tahir Ghani