Patents by Inventor Constante P. Tagamolila

Constante P. Tagamolila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7713386
    Abstract: The apparatus includes an alkylation unit connected to a first benzene recycle conduit, a feed conduit and an alkylation effluent conduit; a transalkylation unit connected to an polyalkylbenzene recycle conduit, a second benzene recycle conduit, and a transalkylation effluent conduit. A dividing wall distillation column is in fluid communication with the transalkylation effluent conduit, the alkylation effluent conduit, a product stream, a bottoms stream conduit and first and second benzene recycle conduits. A polyalkylbenzene fractionation column is connected to the bottoms stream conduit, the polyalkylbenzene recycle conduit and a heavy component conduit.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: May 11, 2010
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525006
    Abstract: This cumene process involves contacting, in an alkylation zone, a first benzene recycle stream and a propylene feed stream with an alkylation catalyst to form cumene. In a transalkylation zone, a polyisopropyl benzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional cumene. The effluents are passed into a dividing wall distillation column. A cumene stream is removed from an intermediate point of the dividing wall fractionation column; a first benzene recycle stream is removed from a first end and a heavy aromatics stream is removed from a second end. A second benzene recycle stream is removed from an intermediate point located between the first end and the cumene stream. A polyisopropyl benzene stream is removed from an intermediate point of located between the second end and the cumene stream.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525003
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a dividing wall distillation column where a benzene overhead and a benzene side draw are removed and recycled. An ethylbenzene stream product stream is also removed. The remainder, largely polyethylbenzene and tar, is passed to a polyethylbenzene column for separation. The separated polyethylbenzene is recycled to the transalkylation reactor.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525005
    Abstract: This cumene process involves contacting, in an alkylation zone, a first benzene recycle stream and a propylene feed stream with an alkylation catalyst to form cumene. In a transalkylation zone, a polyisopropylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional cumene. The effluents are passed into a benzene distillation column. From the benzene distillation column, a first benzene recycle stream is removed as overhead; a second benzene recycle stream is removed as a side draw; and a bottoms stream comprising polyisopropylbenzene, cumene, and heavy aromatics is removed from an end. The bottoms stream is passed to a dividing wall distillation column where the polyisopropylbenzene recycle stream is removed from an intermediate point; a cumene product stream is removed from a first end, and a heavy aromatic stream is removed from a second end.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7525004
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a benzene distillation column. From the benzene distillation column, a first benzene recycle stream is removed as overhead; a second benzene recycle stream is removed as a side draw; and a bottoms stream comprising polyethylbenzene, ethylbenzene, and flux oil is removed from an end. The bottoms stream is passed to a dividing wall distillation column where the polyethylbenzene recycle stream is removed from an intermediate point; an ethylbenzene product stream is removed from a first end, and a heavy oil stream is removed from a second end.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7498471
    Abstract: In an alkylation zone, a benzene recycle stream and a propylene feed stream are contacted with an alkylation catalyst to convert the propylene and benzene into cumene. In a transalkylation zone, a polyisopropylbenzene stream and a benzene recycle stream are contacted with a transalkylation catalyst to convert the polyisopropylbenzene and benzene into cumene. The alkylation and transalkylation zone effluents are passed into a dividing wall fractionation column. A cumene product stream is removed from an intermediate point of the dividing wall fractionation column. A benzene recycle stream is removed from a first end, and another benzene recycle stream is removed from an intermediate point of the dividing wall fractionation column. A polyisopropylbenzene stream is removed from a second end of the dividing wall fractionation column. The polyisopropylbenzene stream is passed to a polyisopropylbenzene fractionation column to separate the polyisopropylbenzene from a heavy ends stream.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 3, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7498472
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a dividing wall distillation column. An ethylbenzene stream is removed from an intermediate point of the dividing wall fractionation column; a first benzene recycle stream is removed from a first end and a flux oil stream is removed from a second end. A second benzene recycle stream is removed from an intermediate point located between the first end and the ethylbenzene stream. A polyethylbenzene stream is removed from an intermediate point of located between the second end and the ethylbenzene stream.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 3, 2009
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080293985
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a dividing wall distillation column. An ethylbenzene stream is removed from an intermediate point of the dividing wall fractionation column; a first benzene recycle stream is removed from a first end and a flux oil stream is removed from a second end. A second benzene recycle stream is removed from an intermediate point located between the first end and the ethylbenzene stream. A polyethylbenzene stream is removed from an intermediate point of located between the second end and the ethylbenzene stream.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080289946
    Abstract: The apparatus includes an alkylation unit connected to a first benzene recycle conduit, a feed conduit and an alkylation effluent conduit; a transalkylation unit connected to an polyalkylbenzene recycle conduit, a second benzene recycle conduit, and a transalkylation effluent conduit. A dividing wall distillation column is in fluid communication with the transalkylation effluent conduit, the alkylation effluent conduit, a product stream, a bottoms stream conduit and first and second benzene recycle conduits. A polyalkylbenzene fractionation column is connected to the bottoms stream conduit, the polyalkylbenzene recycle conduit and a heavy component conduit.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080293986
    Abstract: This cumene process involves contacting, in an alkylation zone, a first benzene recycle stream and a propylene feed stream with an alkylation catalyst to form cumene. In a transalkylation zone, a polyisopropyl benzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional cumene. The effluents are passed into a dividing wall distillation column. A cumene stream is removed from an intermediate point of the dividing wall fractionation column; a first benzene recycle stream is removed from a first end and a heavy aromatics stream is removed from a second end. A second benzene recycle stream is removed from an intermediate point located between the first end and the cumene stream. A polyisopropyl benzene stream is removed from an intermediate point of located between the second end and the cumene stream.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080293983
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a benzene distillation column. From the benzene distillation column, a first benzene recycle stream is removed as overhead; a second benzene recycle stream is removed as a side draw; and a bottoms stream comprising polyethylbenzene, ethylbenzene, and flux oil is removed from an end. The bottoms stream is passed to a dividing wall distillation column where the polyethylbenzene recycle stream is removed from an intermediate point; an ethylbenzene product stream is removed from a first end, and a heavy oil stream is removed from a second end.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080293981
    Abstract: This ethylbenzene process involves contacting, in an alkylation zone, a first benzene recycle stream and an ethylene feed stream with an alkylation catalyst to form ethylbenzene. In a transalkylation zone, a polyethylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional ethylbenzene. The effluents are passed into a dividing wall distillation column where a benzene overhead and a benzene side draw are removed and recycled. An ethylbenzene stream product stream is also removed. The remainder, largely polyethylbenzene and tar, is passed to a polyethylbenzene column for separation. The separated polyethylbenzene is recycled to the transalkylation reactor.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080293982
    Abstract: In an alkylation zone, a benzene recycle stream and a propylene feed stream are contacted with an alkylation catalyst to convert the propylene and benzene into cumene. In a transalkylation zone, a polyisopropylbenzene stream and a benzene recycle stream are contacted with a transalkylation catalyst to convert the polyisopropylbenzene and benzene into cumene. The alkylation and transalkylation zone effluents are passed into a dividing wall fractionation column. A cumene product stream is removed from an intermediate point of the dividing wall fractionation column. A benzene recycle stream is removed from a first end, and another benzene recycle stream is removed from an intermediate point of the dividing wall fractionation column. A polyisopropylbenzene stream is removed from a second end of the dividing wall fractionation column. The polyisopropylbenzene stream is passed to a polyisopropylbenzene fractionation column to separate the polyisopropylbenzene from a heavy ends stream.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Publication number: 20080293984
    Abstract: This cumene process involves contacting, in an alkylation zone, a first benzene recycle stream and a propylene feed stream with an alkylation catalyst to form cumene. In a transalkylation zone, a polyisopropylbenzene recycle stream and a second benzene recycle stream are contacted with a transalkylation catalyst to form additional cumene. The effluents are passed into a benzene distillation column. From the benzene distillation column, a first benzene recycle stream is removed as overhead; a second benzene recycle stream is removed as a side draw; and a bottoms stream comprising polyisopropylbenzene, cumene, and heavy aromatics is removed from an end. The bottoms stream is passed to a dividing wall distillation column where the polyisopropylbenzene recycle stream is removed from an intermediate point; a cumene product stream is removed from a first end, and a heavy aromatic stream is removed from a second end.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Inventors: Michael A. Schultz, Steven P. Lankton, Constante P. Tagamolila
  • Patent number: 7141701
    Abstract: A process for decomposing a cumene oxidation product mixture containing cumene hydroperoxide (CHP) and dimethylphenolcarbinol (DMPC) to produce phenol and acetone.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 28, 2006
    Assignee: UOP LLC
    Inventors: Robert J. Schmidt, Russell C. Schulz, Patrick J. Bullen, Constante P. Tagamolila, Steven P. Lankton, Gary A. Peterson, Michael E. Fettis
  • Patent number: 7141700
    Abstract: A process for the decomposition of a cumene oxidation product mixture to produce phenol and acetone with reduced by-product formation by introducing the cumene oxidation mixture into an inlet of a decomposing vessel containing indirect heat exchange surfaces wherein the cumene oxidation product mixture and a circulating stream are admixed, reacted and cooled by passage around the indirect heat exchange surfaces.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 28, 2006
    Assignee: UOP LLC
    Inventors: Robert J. Schmidt, Russell C. Schulz, Patrick J. Bullen, Constante P. Tagamolila, Steven P. Lankton, Gary A. Peterson, Michael E. Fettis
  • Patent number: 6883788
    Abstract: Disclosed is a method and an apparatus for exchanging heat in a column by passing a first vapor phase through a heat exchanger in the column to exchange heat with a first stream and produce a second vapor phase in the column. The second vapor phase is passed through a shielding device located above the heat exchanger and the shielding device prevents descending liquid from contacting the heat exchanger. The shielding device may be interposed between two heat exchangers in the column.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: April 26, 2005
    Assignee: UOP LLC
    Inventors: Constante P. Tagamolila, F. Joseph O'Driscoll
  • Patent number: 6764660
    Abstract: A process and apparatus for contacting reactants with a particulate catalyst while indirectly heating the reactants with a heat exchange medium improves temperature control by using an intermediate heat exchange fluid and system to prevent overheating of reactants and maintain parallel heating characteristics through multiple reaction-heat exchange zones. The internal flow path minimizes the circulation of the reaction zone heat exchange fluid by incorporating interstage reheating of the reaction zone heat exchange fluid as it passes in series flow. A particularly useful application of the process and apparatus is in the dehydrogenation of ethylbenzene to produce styrene. The process and apparatus can also be used with simultaneous exchange of catalyst particles by an operation that restricts reactant flow while moving catalyst through reaction stacks in which the reactant flow has been restricted.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: July 20, 2004
    Assignee: UOP LLC
    Inventors: William Wiede, Jr., Kevin J. Brandner, Bruce A. Briggs, Donald E. Felch, Constante P. Tagamolila
  • Patent number: 6100436
    Abstract: A process and apparatus for contacting reactants with a particulate catalyst while indirectly heating the reactants with a heat exchange medium improves temperature control by using an intermediate heat exchange fluid and system to prevent overheating of reactants and maintain parallel heating characteristics through multiple reaction-heat exchange zones. The internal flow path minimizes the circulation of the reaction zone heat exchange fluid by incorporating interstage reheating of the reaction zone heat exchange fluid as it passes in series flow. A particularly useful application of the process and apparatus is in the dehydrogenation of ethyl benzene to produce styrene. The process and apparatus can also be used with simultaneous exchange of catalyst particles by an operation that restricts reactant flow while moving catalyst through reaction stacks in which the reactant flow has been restricted.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: August 8, 2000
    Assignee: UOP LLC
    Inventors: William Wiede, Jr., Kevin J. Brandner, Bruce Allen Briggs, Donald Eelch, Constante P. Tagamolila
  • Patent number: 5953927
    Abstract: A process is disclosed for producing a chilled water stream by the integration of a sorption cooling section with a fluid catalytic cracking (FCC) process. The hot and cold working fluids for operation of the sorption cooling section are withdrawn directly from liquid streams in the FCC process in a novel flow scheme which employs a side draw stream to provide the hot working fluid and the liquid condensed from the overhead of the FCC main fractionator as the cold working fluid. The hot exit stream and the warm exit stream are cross-exchanged to smooth out the temperature variations which reduce the size and operating cost of producing the chilled stream. Potential damage to equipment and variation operations can be avoided by selecting the location of the side draw stream to avoid the accumulation of non-condensables in the heat exchange equipment.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: September 21, 1999
    Assignee: UOP LLC
    Inventors: Constante P. Tagamolila, Stephen R. Dunne