Patents by Inventor Cora Schillig

Cora Schillig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140002191
    Abstract: A circuitry (120) adapted to operate in a high-temperature environment of a turbine engine is provided. The circuitry may include a differential amplifier (122) having an input terminal (124) coupled to a sensing element to receive a voltage indicative of a sensed parameter. A hybrid load circuitry (125) may be AC-coupled to the differential amplifier. The hybrid load circuitry may include a resistor-capacitor circuit (134) arranged to provide a path to an AC signal component with respect to the drain terminal of the switch (e.g., 126) of a differential pair of semiconductor switches 126, 128, which receives the voltage indicative of the sensed parameter.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Roberto Marcelo Schupbach, Bryon Western
  • Publication number: 20140002050
    Abstract: A voltage regulator circuitry (50) adapted to operate in a high-temperature environment of a turbine engine is provided. The voltage regulator may include a constant current source (52) including a first semiconductor switch (54) and a first resistor (56) connected between a gate terminal (G) and a source terminal (S) of the first semiconductor switch. A second resistor (58) is connected to the gate terminal of the first semiconductor switch (54) and to an electrical ground (64). The constant current source is coupled to generate a voltage reference across the second resistor 58. A source follower output stage 66 may include a second semiconductor switch (68) and a third resistor (58) connected between the electrical ground and a source terminal of the second semiconductor switch. The generated voltage reference is applied to a gating terminal of the second semiconductor switch (58).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Patent number: 8527241
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) and includes a sensor (118) in connection with a turbine blade (111) or vane (23). A transmitter assembly (117) includes a telemetry transmitter circuit/transceiver may be affixed on a turbine blade (111) or seal plate (115) proximate the turbine blade with a first connecting material (119) deposited on the turbine blade (111) for routing electronic data signals, indicative of a condition of the turbine blade (111), from the sensor (118) to the telemetry transmitter circuit/transceiver. An induction power system for powering the telemetry transmitter circuit/transceiver may include a rotating data antenna (116) affixed to the seal plate (115) with an electrical connection (122) between the telemetry transmitting circuit/transceiver for routing electronic data signals from the telemetry transmitter circuit/transceiver to the rotating data antenna (119).
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 3, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Ramesh Subramanian, Cora Schillig, Anand A. Kulkarni, Vinay Jonnalagadda, Bulent Acar, Sankar Nellian, James P. Williams, Edward R. Roesch
  • Publication number: 20130177740
    Abstract: A powder-based material system having an intrinsic and stable degree of porosity provided by hollow ceramic spheres (26) in a fully dense matrix (27). A substrate (22) is formed from a metal powder (70), and may be partially sintered (60). A layer (24) of ceramic powder is arranged on the substrate including the pre-sintered hollow ceramic spheres plus a proportion of nano-sized ceramic particles effective to reduce the layer sintering temperature and to increase the sintering shrinkage of the layer to approximate that of the metal substrate during subsequent co-sintering. The substrate and layer are then co-sintered (61), such as with spark plasma sintering (32, 34, 36), at a temperature and for a duration to fully densify the ceramic powder matrix around the hollow spheres, thereby producing a metal/ceramic material system with low interface stress and with stable porosity during operational temperatures in a gas turbine engine.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 11, 2013
    Inventors: Gary B. Merrill, Cora Schillig
  • Publication number: 20130052442
    Abstract: A method of forming a ceramic layer on a metal substrate. A substrate (40) is formed (54) from a powder (24) of the metal, and may optionally be partially sintered (56). A layer (43) of powdered ceramic is formed (58) on or applied against the substrate (45). The ceramic powder may include a proportion of nano-sized particles effective to reduce the ceramic sintering temperature and to increase the sintering shrinkage of the ceramic layer to more closely match that of the metal substrate. The substrate and layer are then co-sintered (21, 60) at a temperature and for a duration that densifies and bonds them, producing a metal/ceramic layered material system with low interface stress that is durable to temperature variations in a gas turbine. Spark plasma sintering (32, 34, 36) may be used to sinter and/or co-sinter substrate and layer materials that normally cannot be sintered.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: Gary B. Merrill, Cora Schillig, Andrew J. Burns, John R. Paulus
  • Publication number: 20130008179
    Abstract: An inductance-stable ultra high temperature circuit coupling transformer (50) used to transmit and receive alternating current power and/or data signals (29?, 33?). Primary (30?) and secondary (34?) windings are formed on nanostructured laminated (31?) primary and secondary steel cores (32?) having a Curie temperature exceeding an ultra high operating temperature. The operating range can extend from ambient to 250° C. or to in excess of 550° C. or up to 700° C. with a change in inductance of less than 10% in various embodiments.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Inventors: David J. Mitchell, Cora Schillig, Rod Waits, Anand A. Kulkarni
  • Publication number: 20130002358
    Abstract: A circuitry adapted to operate in a high-temperature environment of a turbine engine is provided. A relatively high-gain differential amplifier (102) may have an input terminal coupled to receive a voltage indicative of a sensed parameter of a component (20) of the turbine engine. A hybrid load circuitry may be coupled to the differential amplifier. A voltage regulator circuitry (244) may be coupled to power the differential amplifier. The differential amplifier, the hybrid load circuitry and the voltage regulator circuitry may each be disposed in the high-temperature environment of the turbine engine.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 3, 2013
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Publication number: 20120197597
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) and includes a sensor (118) in connection with a turbine blade (111) or vane (23). A transmitter assembly (117) includes a telemetry transmitter circuit/transceiver may be affixed on a turbine blade (111) or seal plate (115) proximate the turbine blade with a first connecting material (119) deposited on the turbine blade (111) for routing electronic data signals, indicative of a condition of the turbine blade (111), from the sensor (118) to the telemetry transmitter circuit/transceiver. An induction power system for powering the telemetry transmitter circuit/transceiver may include a rotating data antenna (116) affixed to the seal plate (115) with an electrical connection (122) between the telemetry transmitting circuit/transceiver for routing electronic data signals from the telemetry transmitter circuit/transceiver to the rotating data antenna (119).
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventors: David J. Mitchell, Ramesh Subramanian, Cora Schillig, Anand A. Kulkarni, Vinay Jonnalagadda, Bulent Acar, Sankar Nellian, James P. Williams, Edward R. Roesch
  • Publication number: 20110262841
    Abstract: A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.
    Type: Application
    Filed: September 26, 2008
    Publication date: October 27, 2011
    Inventors: Ines Becker, Cora Schillig