Patents by Inventor Corey K. Quinnell

Corey K. Quinnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9303387
    Abstract: A hydraulic system has a pump that furnishes pressurized fluid to a supply node connected to a plurality of functions. Each function includes hydraulic actuator and a control valve assembly through which fluid flows both from the supply node to the hydraulic actuator and from the hydraulic actuator to a return line. A control method involves receiving a plurality of commands, each designating desired operation of a function. Each command is separately used to derive a flow value designating an amount of flow for the respective function, a load value indicating a load magnitude related to the respective function, and a pressure value denoting a supply pressure for the respective function. Then, the control valve assembly for each given hydraulic function is operated in response to the flow and load values for that function and in response to the pressure value that is greatest among the plurality of functions.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: April 5, 2016
    Assignee: HUSCO International, Inc.
    Inventors: Joseph L. Pfaff, Corey K. Quinnell
  • Patent number: 9091281
    Abstract: A valve assembly has a flow summation node coupled to a displacement control port of the first pump. Each valve in the assembly has a variable metering orifice controlling flow from an inlet to a hydraulic actuator and has a variable source orifice conveying fluid from a supply conduit to a flow summation node. The source orifice enlarges as the metering orifice shrinks. Each valve includes a variable bypass orifice and the bypass orifices of all the control valves are connected in series forming a bypass passage between a bypass node and a tank. The bypass node is coupled to the flow summation node and receives fluid from a second pump. At each valve, a source check valve conveys fluid from the supply conduit to the inlet and a bypass supply check valve conveys fluid from the bypass passage to the inlet.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 28, 2015
    Assignee: HUSCO International, Inc.
    Inventors: Corey K. Quinnell, Joseph L. Pfaff, Jonathan M. Starkey, Eric P. Hamkins
  • Patent number: 9032724
    Abstract: Fluid from two pumps is allocated to a plurality of hydraulic actuators based on a plurality of flow commands, each specifying a desired amount of flow to be applied to a different hydraulic actuator. For a given hydraulic actuator, the allocation involves (1) determining an apportionment of the desired amount of flow, if no other hydraulic actuator is active, and (2) altering the apportionment in response to all the plurality of flow commands, and (3) using the altered apportionment to determine a first amount of the flow for one pump to provide and a second amount of the flow for the other pump to provide. The process is repeated for all the hydraulic actuators. Supply valves for each hydraulic actuator are controlled by the associated first and second amounts and each pump is controlled in response to either the first or second amounts for all the hydraulic actuators.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: May 19, 2015
    Assignee: HUSCO International Inc.
    Inventors: Joseph L. Pfaff, Eric P. Hamkins, Corey K. Quinnell
  • Patent number: 8899034
    Abstract: A system has a variable displacement pump that supplies pressurized fluid to power a plurality of hydraulic functions. Each hydraulic function has a control valve with a variable source orifice controlling fluid flow between the pump and a flow summation node, and a variable metering orifice controlling fluid flow between the flow summation node and a hydraulic actuator. Variable bypass orifices in the control valves are connected in series between the flow summation node and a tank. As the metering orifice in a control valve enlarges, the source orifice enlarges and the bypass orifice shrinks. This alters pressure at the flow summation node, which is used to control the output of the pump. Components are provided to give selected hydraulic functions different levels of priority with respect to consuming fluid flow from the pump.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 2, 2014
    Assignee: HUSCO International, Inc.
    Inventors: Jacob Ballweg, Gary J. Pieper, Corey K. Quinnell, Jonathan M. Starkey, Eric P. Hamkins
  • Publication number: 20140116038
    Abstract: A hydraulic system has a pump that furnishes pressurized fluid to a supply node connected to a plurality of functions. Each function includes hydraulic actuator and a control valve assembly through which fluid flows both from the supply node to the hydraulic actuator and from the hydraulic actuator to a return line. A control method involves receiving a plurality of commands, each designating desired operation of a function. Each command is separately used to derive a flow value designating an amount of flow for the respective function, a load value indicating a load magnitude related to the respective function, and a pressure value denoting a supply pressure for the respective function. Then, the control valve assembly for each given hydraulic function is operated in response to the flow and load values for that function and in response to the pressure value that is greatest among the plurality of functions.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: HUSCO International, Inc.
    Inventors: Joseph L. Pfaff, Corey K. Quinnell
  • Publication number: 20130160443
    Abstract: A system has a variable displacement pump that supplies pressurized fluid to power a plurality of hydraulic functions. Each hydraulic function has a control valve with a variable source orifice controlling fluid flow between the pump and a flow summation node, and a variable metering orifice controlling fluid flow between the flow summation node and a hydraulic actuator. Variable bypass orifices in the control valves are connected in series between the flow summation node and a tank. As the metering orifice in a control valve enlarges, the source orifice enlarges and the bypass orifice shrinks. This alters pressure at the flow summation node, which is used to control the output of the pump. Components are provided to give selected hydraulic functions different levels of priority with respect to consuming fluid flow from the pump.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Inventors: Jacob Ballweg, Gary J. Pieper, Corey K. Quinnell, Jonathan M. Starkey, Eric P. Hamkins
  • Publication number: 20120233996
    Abstract: A valve assembly has a flow summation node coupled to a displacement control port of the first pump. Each valve in the assembly has a variable metering orifice controlling flow from an inlet to a hydraulic actuator and has a variable source orifice conveying fluid from a supply conduit to a flow summation node. The source orifice enlarges as the metering orifice shrinks. Each valve includes a variable bypass orifice and the bypass orifices of all the control valves are connected in series forming a bypass passage between a bypass node and a tank. The bypass node is coupled to the flow summation node and receives fluid from a second pump. At each valve, a source check valve conveys fluid from the supply conduit to the inlet and a bypass supply check valve conveys fluid from the bypass passage to the inlet.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Inventors: Corey K. Quinnell, Joseph L. Pfaff, Jonathan M. Starkey, Eric P. Hamkins
  • Publication number: 20110308242
    Abstract: Fluid from two pumps is allocated to a plurality of hydraulic actuators based on a plurality of flow commands, each specifying a desired amount of flow to be applied to a different hydraulic actuator. For a given hydraulic actuator, the allocation involves (1) determining an apportionment of the desired amount of flow, if no other hydraulic actuator is active, and (2) altering the apportionment in response to all the plurality of flow commands, and (3) using the altered apportionment to determine a first amount of the flow for one pump to provide and a second amount of the flow for the other pump to provide. The process is repeated for all the hydraulic actuators. Supply valves for each hydraulic actuator are controlled by the associated first and second amounts and each pump is controlled in response to either the first or second amounts for all the hydraulic actuators.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 22, 2011
    Inventors: Joseph L. Pfaff, Eric P. Hamkins, Corey K. Quinnell