Patents by Inventor Corey Lemley

Corey Lemley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230009688
    Abstract: A method of processing a substrate that includes: loading the substrate in a processing system, the substrate including a metal having a metal surface and a first dielectric material having a dielectric material surface, the metal surface and the dielectric material surface being at the same level; etching the metal to form a recessed metal surface below the dielectric material surface; selectively forming a self-assembled monolayer (SAM) on the recessed metal surface using a spin-on process; and depositing a dielectric film including a second dielectric material on the dielectric material surface.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 12, 2023
    Inventors: Dina H. Triyoso, Lior Huli, Corey Lemley, Robert D. Clark, Gerrit Leusink
  • Publication number: 20220334485
    Abstract: A method of processing a wafer that includes: positioning the wafer within a processing chamber, the wafer including a film deposited over a surface of the wafer; rotating the wafer within the processing chamber; mixing a first fluid with a second fluid at a mixing ratio using a dispense nozzle assembly resulting in a fluid mixture; and while rotating the wafer, dispensing the fluid mixture from the dispense nozzle assembly over an edge portion of the wafer to remove a portion of the film on the edge portion of the wafer.
    Type: Application
    Filed: March 10, 2022
    Publication date: October 20, 2022
    Inventors: Lior Huli, Corey Lemley
  • Patent number: 11460775
    Abstract: Methods for processing a substrate are provided. The method includes receiving a substrate. The substrate has a front side surface, a backside surface, and a side edge surface. The method also includes forming a first material in a first annular region of the front side surface, resulting in the first annular being coated with the first material. The first annular region is immediately adjacent to a perimeter of the substrate. The first annular region has a first outer perimeter proximate to the perimeter of the substrate and a first inner perimeter away from the perimeter of the substrate. The method also includes forming a second material in an interior region of the front side surface, the second material coating the front side surface without adhering to the annular region.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: October 4, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Hoyoung Kang, Anton J. Devilliers, Corey Lemley
  • Patent number: 11456185
    Abstract: In certain embodiments, a method for processing a substrate includes applying a surface treatment to selected surfaces of the substrate. The substrate has a non-planar topography including structures defining recesses. The method further includes depositing a fill material on the substrate by spin-on deposition. The surface treatment directs the fill material to the recesses and away from the selected surfaces to fill the recesses with the fill material without adhering to the selected surfaces. The method further includes removing the surface treatment from the selected surfaces of the substrate and depositing a planarizing film on the substrate by spin-on deposition. The planarizing film is deposited on the selected surfaces and top surfaces of the fill material.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: September 27, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Ryan Burns, Mark Somervell, Corey Lemley
  • Publication number: 20210245077
    Abstract: An apparatus includes a chemical filter fluidly coupled between a source for a processing solution and a nozzle to dispense the processing solution. The chemical filter is configured to filter the processing solution from the source. The apparatus may include a vacuum pump that is configured to apply a vacuum to the chemical filter. The apparatus may include a valve system configured to operate in a first operating state and a second operating state, where in the first operating state the valve system is configured to couple the source to the chemical filter and block the vacuum to the chemical filter, and where in the second operating state the valve system is configured to couple the vacuum to the chemical filter and block the source to the chemical filter.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 12, 2021
    Inventor: Corey Lemley
  • Patent number: 11043378
    Abstract: Methods for processing a substrate are provided. The method includes receiving a substrate. The substrate has a front side surface, a backside surface, and a side edge surface. The method also includes coating the front side surface, the backside surface and the side edge surface with a self-assembled monolayer and exposing an area of interest with actinic radiation. The actinic radiation causes a de-protection reaction within the self-assembled monolayer within the central region. The method also includes removing the self-assembled monolayer from the area of interest while the self-assembled monolayer remains on remaining surfaces of the substrate.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: June 22, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Corey Lemley, Richard Farrell, Hoyoung Kang
  • Publication number: 20200395224
    Abstract: In certain embodiments, a method for processing a substrate includes applying a surface treatment to selected surfaces of the substrate. The substrate has a non-planar topography including structures defining recesses. The method further includes depositing a fill material on the substrate by spin-on deposition. The surface treatment directs the fill material to the recesses and away from the selected surfaces to fill the recesses with the fill material without adhering to the selected surfaces. The method further includes removing the surface treatment from the selected surfaces of the substrate and depositing a planarizing film on the substrate by spin-on deposition. The planarizing film is deposited on the selected surfaces and top surfaces of the fill material.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 17, 2020
    Inventors: Ryan Burns, Mark Somervell, Corey Lemley
  • Patent number: 10734229
    Abstract: Techniques herein include a method of forming etch masks to form contact holes and other features. Techniques herein use a reversal method to create contact hole patterns with improved critical dimension uniformity and contact edge roughness as compared to traditional direct print photolithography methods. A pillar is printed as an initial structure. The initial structure is reshaped to change smoothness, uniformity, and/or dimensions. A conformal film is deposited on the pillar. The conformal film can include a metal-containing material. A planarization process is executed that removes pillars down to the working surface of the substrate leaving the conformal film on the working surface of the substrate. This conformal film can then be used as an etch mask for additional pattern transfer.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: August 4, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. deVilliers, Corey Lemley
  • Publication number: 20200152453
    Abstract: Methods for processing a substrate are provided. The method includes receiving a substrate. The substrate has a front side surface, a backside surface, and a side edge surface. The method also includes coating the front side surface, the backside surface and the side edge surface with a self-assembled monolayer and exposing an area of interest with actinic radiation. The actinic radiation causes a de-protection reaction within the self-assembled monolayer within the central region. The method also includes removing the self-assembled monolayer from the area of interest while the self-assembled monolayer remains on remaining surfaces of the substrate.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Corey LEMLEY, Richard Farrell, Hoyoung Kang
  • Publication number: 20200073244
    Abstract: Methods for processing a substrate are provided. The method includes receiving a substrate. The substrate has a front side surface, a backside surface, and a side edge surface. The method also includes forming a first material in a first annular region of the front side surface, resulting in the first annular being coated with the first material. The first annular region is immediately adjacent to a perimeter of the substrate. The first annular region has a first outer perimeter proximate to the perimeter of the substrate and a first inner perimeter away from the perimeter of the substrate. The method also includes forming a second material in an interior region of the front side surface, the second material coating the front side surface without adhering to the annular region.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 5, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Hoyoung Kang, Anton J. Devilliers, Corey Lemley
  • Patent number: 10525416
    Abstract: A process is disclosed for wetting a filter cartridge used to treat a liquid solvent used in semiconductor manufacture. In the process, a filter cartridge having void spaces wherein the void spaces contain residual gas from the manufacturing process used to make the filter cartridge is connected to a source of purging gas. The purging gas is flowed through the filter cartridge to at least partially displace at least a portion of the residual gas from the manufacturing process used to make the filter cartridge. Next, liquid solvent is pumped through the filter cartridge so that the purging gas dissolves into the liquid solvent and to at least partially fill the void spaces to thereby at least partially wet out the filter cartridge with the liquid solvent.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 7, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Hoyoung Kang, Anton deVilliers, Corey Lemley
  • Publication number: 20190214256
    Abstract: Techniques herein include a method of forming etch masks to form contact holes and other features. Techniques herein use a reversal method to create contact hole patterns with improved critical dimension uniformity and contact edge roughness as compared to traditional direct print photolithography methods. A pillar is printed as an initial structure. The initial structure is reshaped to change smoothness, uniformity, and/or dimensions. A conformal film is deposited on the pillar. The conformal film can include a metal-containing material. A planarization process is executed that removes pillars down to the working surface of the substrate leaving the conformal film on the working surface of the substrate. This conformal film can then be used as an etch mask for additional pattern transfer.
    Type: Application
    Filed: January 4, 2019
    Publication date: July 11, 2019
    Inventors: Anton J. deVilliers, Corey Lemley
  • Publication number: 20180333680
    Abstract: A process is disclosed for wetting a filter cartridge used to treat a liquid solvent used in semiconductor manufacture. In the process, a filter cartridge having void spaces wherein the void spaces contain residual gas from the manufacturing process used to make the filter cartridge is connected to a source of purging gas. The purging gas is flowed through the filter cartridge to at least partially displace at least a portion of the residual gas from the manufacturing process used to make the filter cartridge. Next, liquid solvent is pumped through the filter cartridge so that the purging gas dissolves into the liquid solvent and to at least partially fill the void spaces to thereby at least partially wet out the filter cartridge with the liquid solvent.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 22, 2018
    Inventors: Hoyoung Kang, Anton deVilliers, Corey Lemley