Patents by Inventor Corey Zankowski

Corey Zankowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951330
    Abstract: An apparatus includes a first multileaf collimator comprising a plurality of pairs of beam-blocking leaves each comprising an end portion. The end portions of beam-blocking leaves of two adjacent pairs are configured to collectively form an aperture when the two adjacent pairs of beam-blocking leaves are closed. The aperture may be sized and shaped to allow a radiation beam to pass through for radiosurgery.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 9, 2024
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Corey Zankowski, Sasa Mutic
  • Patent number: 11878184
    Abstract: A system for estimating a dose from a radiation therapy plan includes a memory that stores machine-readable instructions and a processor communicatively coupled to the memory, the processor operable to execute the instructions to subdivide a representation of a volume of interest into voxels. The processor also determines distances between a planned radiation field origin and each respective voxel. The processor further computes geometry-based expected (GED) metrics based on the distances, a plan parameter, and a field strength parameter. The processor sums the metrics to yield an estimated dose received by the volume of interest from the planned radiation field.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 23, 2024
    Assignee: SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Corey Zankowski, Janne Nord, Maria Isabel Cordero Marcos, Joona Hartman, Jarkko Peltola, Esa Kuusela
  • Publication number: 20230293906
    Abstract: A control circuit accesses information regarding a plurality of pre-existing vetted radiation treatment plans for a variety of patients and uses that information to train at least one model (such as a dose volume histogram estimation model). The control circuit then uses that model to develop estimates for a radiation treatment plan for a particular patient. The control circuit can then use those estimates to develop a candidate radiation treatment plan.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Inventors: Janne I. Nord, Joona Hartman, Esa Kuusela, Corey Zankowski
  • Patent number: 11724126
    Abstract: Example methods and systems for quality-aware continuous learning for radiotherapy treatment planning are provided. One example method may comprise: obtaining an artificial intelligence (AI) engine that is trained to perform a radiotherapy treatment planning task. The method may also comprise: based on input data associated with a patient, performing the radiotherapy treatment planning task using the AI engine to generate output data associated with the patient; and obtaining modified output data that includes one or more modifications made by a treatment planner to the output data. The method may further comprise: performing quality evaluation based on (a) first quality indicator data associated with the modified output data, and/or (b) second quality indicator data associated with the treatment planner. In response to a decision to accept, a modified AI engine may be generated by re-training the AI engine based on the modified output data.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: August 15, 2023
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Charles Adelsheim, Corey Zankowski, Petr Jordan
  • Patent number: 11712579
    Abstract: A system for treating a patient during radiation therapy includes range compensators. Each of the range compensators shapes a distribution of a dose delivered to the patient by a beam emitted from a nozzle of a radiation treatment system. A positioning component holds the range compensator in place relative to the patient such that the range compensator lies on a path of the beam.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 1, 2023
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Eric Abel, Corey Zankowski
  • Patent number: 11684800
    Abstract: A control circuit accesses information regarding a plurality of pre-existing vetted radiation treatment plans for a variety of patients and uses that information to train at least one model (such as a dose volume histogram estimation model). The control circuit then uses that model to develop estimates for a radiation treatment plan for a particular patient. The control circuit can then use those estimates to develop a candidate radiation treatment plan.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: June 27, 2023
    Assignees: Varian Medical Systems International AG, Varian Medical Systems, Inc.
    Inventors: Janne I. Nord, Joona Hartman, Esa Kuusela, Corey Zankowski
  • Publication number: 20230191154
    Abstract: A system for treating a patient during radiation therapy is disclosed. The system includes a shell, a plurality of material inserts disposed in the shell, where each material insert of the plurality of material inserts respectively shapes a distribution of a dose delivered to the patient by a respective beam of a plurality of beams emitted from a nozzle of a radiation treatment system, and a scaffold component disposed in the shell that holds the plurality material inserts in place relative to the patient such that each material insert lies on a path of at least one of the beams.
    Type: Application
    Filed: February 14, 2023
    Publication date: June 22, 2023
    Inventors: Eric ABEL, Corey ZANKOWSKI, Jessica PEREZ, Anthony MAGLIARI, Christel SMITH, MIchael FOLKERTS, Bill HANSEN, Reynald VANDERSTRAETEN, Timo KOPONEN
  • Patent number: 11590364
    Abstract: A system for treating a patient during radiation therapy is disclosed. The system includes a shell, a plurality of material inserts disposed in the shell, where each material insert of the plurality of material inserts respectively shapes a distribution of a dose delivered to the patient by a respective beam of a plurality of beams emitted from a nozzle of a radiation treatment system, and a scaffold component disposed in the shell that holds the plurality material inserts in place relative to the patient such that each material insert lies on a path of at least one of the beams.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 28, 2023
    Assignees: Varian Medical Systems International AG, Varian Medical Systems Particle Therapy GmbH & Co. KG, Varian Medical Systems, Inc.
    Inventors: Eric Abel, Corey Zankowski, Jessica Perez, Anthony Magliari, Christel Smith, Michael Folkerts, Bill Hansen, Reynald Vanderstraeten, Timo Koponen
  • Publication number: 20220414428
    Abstract: Embodiments described herein provide for training an artificial intelligence model to become a preference-aware model. The artificial intelligence model preferences as the artificial intelligence model trains. Reinforcement learning is used to train experts in the artificial intelligence model such that each expert is trained to converge to a unique preference. The architecture of the artificial intelligence model is highly flexible. Upon executing a trained model, users can select automatically images according to various preferences based on medical professional preferences, geographic preferences, patient anatomy, and institutional guidelines.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Applicant: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Simant DUBE, Oskar RADERMECKER, Parin DALAL, Corey ZANKOWSKI
  • Patent number: 11481728
    Abstract: A method for implementing a radiation therapy knowledge exchange starts with searching a database of cases studies and selecting a case study. The selected case study is downloaded. The downloaded case study is applied to a medical case, wherein the downloaded case is applied using deformable image registration to deform reference images of the downloaded case to medical images of the medical case. After application of the downloaded case study, the medical case is uploaded to the network, wherein uploading the medical case allows at least the submitting clinician to download, review, and edit at least a portion of the medical case to create a reviewed medical case. Finally, the reviewed medical case is downloaded and applied to the medical case to create a final medical case.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: October 25, 2022
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS INTERNATIONAL AG
    Inventors: Burton Lang, Corey Zankowski, Ramin Baghaie
  • Patent number: 11455732
    Abstract: A method for medical image segmentation. The method includes accessing and updating a knowledge-base in accordance with embodiments of the present invention. The techniques include: receiving a medical image and computing a sparse landmark signature based on the medical image content. Next, a knowledge-base is searched for representative matches to form a base set, wherein the base set comprises a plurality of reference image sets. A portion of the plurality of reference image sets of the base set is deformed to generate mappings from the base set to the medical image set. Finally a weighted average segmentation for each structure of interest of the medical image set is determined.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 27, 2022
    Assignee: Varian Medical Systems, Inc.
    Inventor: Corey Zankowski
  • Publication number: 20220241616
    Abstract: An apparatus includes a first multileaf collimator comprising a plurality of pairs of beam-blocking leaves each comprising an end portion. The end portions of beam-blocking leaves of two adjacent pairs are configured to collectively form an aperture when the two adjacent pairs of beam-blocking leaves are closed. The aperture may be sized and shaped to allow a radiation beam to pass through for radiosurgery.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventors: Corey Zankowski, Sasa Mutic
  • Publication number: 20210322789
    Abstract: A system for estimating a dose from a radiation therapy plan includes a memory that stores machine-readable instructions and a processor communicatively coupled to the memory, the processor operable to execute the instructions to subdivide a representation of a volume of interest into voxels. The processor also determines distances between a planned radiation field origin and each respective voxel. The processor further computes geometry-based expected (GED) metrics based on the distances, a plan parameter, and a field strength parameter. The processor sums the metrics to yield an estimated dose received by the volume of interest from the planned radiation field.
    Type: Application
    Filed: May 17, 2021
    Publication date: October 21, 2021
    Inventors: Corey ZANKOWSKI, Janne NORD, Maria Isabel Cordero MARCOS, Joona HARTMAN, Jarkko PELTOLA, Esa KUUSELA
  • Patent number: 11027147
    Abstract: A system for estimating a dose from a radiation therapy plan includes a memory that stores machine-readable instructions and a processor communicatively coupled to the memory, the processor operable to execute the instructions to subdivide a representation of a volume of interest into voxels. The processor also determines distances between a planned radiation field origin and each respective voxel. The processor further computes geometry-based expected (GED) metrics based on the distances, a plan parameter, and a field strength parameter. The processor sums the metrics to yield an estimated dose received by the volume of interest from the planned radiation field.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: June 8, 2021
    Assignees: Varian Medical Systems International AG., Varian Medical Systems, Inc.
    Inventors: Corey Zankowski, Janne Nord, Maria Isabel Cordero Marcos, Joona Hartman, Jarkko Peltola, Esa Kuusela
  • Patent number: 11011264
    Abstract: Example methods and systems for radiotherapy treatment planning are provided. One example method may comprise obtaining image data associated with a patient; and processing the image data to generate a treatment plan for the patient using an inferential chain that includes multiple AI engines that are trained separately to perform respective multiple treatment planning steps. A first treatment planning step may be performed using a first AI engine to generate first output data based on at least one of: (i) the image data, and (ii) first input data generated based on the image data. A second treatment planning step may be performed using a second AI engine to generate the treatment plan based on at least one of: (i) the first output data, and (ii) second input data generated based on the first output data.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: May 18, 2021
    Inventors: Corey Zankowski, Charles Adelsheim, Joakim Pyyry, Esa Kuusela
  • Publication number: 20210138269
    Abstract: An apparatus includes a first multileaf collimator comprising a plurality of pairs of beam-blocking leaves each comprising an end portion. The end portions of beam-blocking leaves of two adjacent pairs are configured to collectively form an aperture when the two adjacent pairs of beam-blocking leaves are closed. The aperture may be sized and shaped to allow a radiation beam to pass through for radiosurgery.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Corey Zankowski, Sasa Mutic
  • Publication number: 20210113856
    Abstract: In various embodiments, a radiation therapy method can include loading a planning image of a target in a human. In addition, the position of the target can be monitored. A computation can be made of an occurrence of substantial alignment between the position of the target and the target of the planning image. Furthermore, after the computing, a beam of radiation is triggered to deliver a dosage to the target in a short period of time (e.g., less than a second).
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Inventors: Christel SMITH, Corey ZANKOWSKI, Jan Hein TIMMER, Wolfgang KAISSL, Deepak KHUNTIA, Eric ABEL, Josh STAR-LACK, Camille NOEL
  • Patent number: 10974071
    Abstract: An apparatus includes a first multileaf collimator comprising a plurality of pairs of beam-blocking leaves each comprising an end portion. The end portions of beam-blocking leaves of two adjacent pairs are configured to collectively form an aperture when the two adjacent pairs of beam-blocking leaves are closed. The aperture may be sized and shaped to allow a radiation beam to pass through for radiosurgery.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 13, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Corey Zankowski, Sasa Mutic
  • Patent number: 10898730
    Abstract: In various embodiments, a radiation therapy method can include loading a planning image of a target in a human. In addition, the position of the target can be monitored. A computation can be made of an occurrence of substantial alignment between the position of the target and the target of the planning image. Furthermore, after the computing, a beam of radiation is triggered to deliver a dosage to the target in a short period of time (e.g., less than a second).
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: January 26, 2021
    Assignees: Varian Medical Systems International AG, Varian Medical Systems, Inc
    Inventors: Christel Smith, Corey Zankowski, Jan Timmer, Wolfgang Kaissl, Deepak Khuntia, Eric Abel, Josh Star-Lack, Camille Noel
  • Publication number: 20200398079
    Abstract: Example methods and systems for quality-aware continuous learning for radiotherapy treatment planning are provided. One example method may comprise: obtaining an artificial intelligence (AI) engine that is trained to perform a radiotherapy treatment planning task. The method may also comprise: based on input data associated with a patient, performing the radiotherapy treatment planning task using the AI engine to generate output data associated with the patient; and obtaining modified output data that includes one or more modifications made by a treatment planner to the output data. The method may further comprise: performing quality evaluation based on (a) first quality indicator data associated with the modified output data, and/or (b) second quality indicator data associated with the treatment planner. In response to a decision to accept, a modified AI engine may be generated by re-training the AI engine based on the modified output data.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 24, 2020
    Applicant: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Charles ADELSHEIM, Corey ZANKOWSKI, Petr JORDAN