Patents by Inventor Cornelia Tsang

Cornelia Tsang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10396220
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The optoelectronic device is excitable by light at an application wavelength. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The surrogate substrate has a volume of substrate removed therefrom to form a via. Light passes through the via and at least some of the surrogate substrate prior to reaching the optoelectronic device.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John U. Knickerbocker, Steven Lorenz Wright, Cornelia Tsang Yang
  • Publication number: 20190189469
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Applicant: International Business Machines Corporation
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Patent number: 10325785
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Publication number: 20190148564
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The optoelectronic device is excitable by light at an application wavelength. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The surrogate substrate has a volume of substrate removed therefrom to form a via. Light passes through the via and at least some of the surrogate substrate prior to reaching the optoelectronic device.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Bing DANG, John U. KNICKERBOCKER, Steven Lorenz WRIGHT, Cornelia TSANG YANG
  • Patent number: 10276439
    Abstract: After bonding a second substrate to a first substrate through a bonded material layer to provide a bonded structure, through dielectric via (TDV) openings of different depths are concurrently formed in the bonded structure by performing a single anisotropic etch using fluorine-deficient species that are obtained by dissociation of fluorocarbon-containing molecules.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Li-Wen Hung, Eric Joseph, Eugene O'Sullivan, Jeff Waksman, Cornelia Tsang Yang
  • Patent number: 10243091
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John U. Knickerbocker, Steven Lorenz Wright, Cornelia Tsang Yang
  • Patent number: 10224219
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Publication number: 20180350677
    Abstract: After bonding a second substrate to a first substrate through a bonded material layer to provide a bonded structure, through dielectric via (TDV) openings of different depths are concurrently formed in the bonded structure by performing a single anisotropic etch using fluorine-deficient species that are obtained by dissociation of fluorocarbon-containing molecules.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 6, 2018
    Inventors: Sebastian U. Engelmann, Li-Wen Hung, Eric Joseph, Eugene O'Sullivan, Jeff Waksman, Cornelia Tsang Yang
  • Publication number: 20180229235
    Abstract: An apparatus for sorting macromolecules includes a first chip including a channel formed in a first side of the first chip and having at least one monolithic sorting structure for sorting macromolecules from the sample fluid. A first set of vias formed in the first chip has openings in a second side of the first chip, the sample fluid being provided to the sorting structure through the first set of vias. A second set of vias formed in the first chip has openings in the second side for receiving macromolecules in the sample fluid greater than or equal to a prescribed dimension sorted by the sorting structure. A third set of vias formed in the first chip has openings in the second side for receiving macromolecules in the sample fluid less than the prescribed dimension. The apparatus includes first and second seals covering the first and second sides, respectively.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 16, 2018
    Inventors: Joshua T. Smith, Cornelia Tsang Yang, Benjamin H. Wunsch
  • Publication number: 20180226516
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Applicant: International Business Machines Corporation
    Inventors: Bing DANG, John U. KNICKERBOCKER, Steven Lorenz WRIGHT, Cornelia TSANG YANG
  • Publication number: 20180218934
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Patent number: 10032943
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate. A method of fabricating the semiconductor structure includes fabricating the optoelectronic device in a device layer thin-film of SiC on a silicon wafer of a first diameter, transferring the device layer thin-film of SiC from the silicon wafer, and permanently bonding the device layer thin-film to a SiC surrogate substrate of a second diameter.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John U. Knickerbocker, Steven Lorenz Wright, Cornelia Tsang Yang
  • Publication number: 20180138073
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20180138072
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Patent number: 9947570
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Publication number: 20180082888
    Abstract: A multi-layer wafer and method of manufacturing such wafer are provided. The method comprises applying a stress compensating oxide layer to each of two heterogeneous wafers, applying at least one bonding oxide layer to at least one of the two heterogeneous wafers, chemical-mechanical polishing the at least one bonding oxide layer, and low temperature bonding the two heterogeneous wafers to form a multi-layer wafer pair. The multi-layer wafer comprises two heterogeneous wafers, each of the heterogeneous wafers having a stress compensating oxide layer and at least one bonding oxide layer applied to at least one of the two heterogeneous wafers. The two heterogeneous wafers are low temperature bonded together to form the multi-layer wafer.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Li-Wen HUNG, John U. KNICKERBOCKER, Leathen SHI, Cornelia TSANG YANG, Bucknell C. WEBB
  • Publication number: 20170194186
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 6, 2017
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20170194185
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20170179307
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate. A method of fabricating the semiconductor structure includes fabricating the optoelectronic device in a device layer thin-film of SiC on a silicon wafer of a first diameter, transferring the device layer thin-film of SiC from the silicon wafer, and permanently bonding the device layer thin-film to a SiC surrogate substrate of a second diameter.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Bing DANG, John U. KNICKERBOCKER, Steven Lorenz WRIGHT, Cornelia Tsang YANG
  • Publication number: 20110199108
    Abstract: A silicon chicklet pedestal for use in a wafer-level test probe of a wafer is provided and includes a main body, first and second opposing faces, and an array of vias formed through the main body to extend between the first and second faces, through which pairs of leads, respectively associated with each via at the first and second faces, are electrically connectable to one another.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: S. Jay Chey, Timothy C. Krywanczyk, Mohammed S. Shaikh, Matthew T. Tiersch, Cornelia Tsang