Patents by Inventor Cornelis Buijs

Cornelis Buijs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8931306
    Abstract: A wet hydrocarbon stream having at least methane and water, provided at a temperature equal to a first temperature, is cooled thereby lowering the temperature to a second temperature. In a water removal device a wet disposal stream having water is withdrawn from the wet hydrocarbon stream, at the second temperature. An effluent stream having the wet hydrocarbon stream from which the wet disposal stream has been removed, is discharged from the water removal device and passed to a further heat exchanger. A refrigerant stream is also passed to the further heat exchanger, and both the effluent stream and the refrigerant stream are cooled in the further heat exchanger by indirect heat exchanging against an evaporating refrigerant fraction. The effluent stream is heated by indirectly heat exchanging against the wet hydrocarbon stream. The cooling of the wet hydrocarbon stream includes this indirectly heat exchanging.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 13, 2015
    Assignee: Shell Oil Company
    Inventors: Cornelis Buijs, Francois Chantant
  • Publication number: 20130098103
    Abstract: In a method and apparatus for treating a hydrocarbon stream having methane, at least a part of the hydrocarbon stream and a main refrigerant stream are cooled by indirect heat exchanging against a pre-cooling refrigerant. The pre-cooled hydrocarbon stream is passed to a first inlet of an extraction column, and an effluent stream is discharged from the extraction column. The effluent stream and at least a part of the pre-cooled main refrigerant stream are passed to a further heat exchanger, where they are both cooled thereby providing a cooled methane-enriched hydrocarbon stream and at least one cooled main refrigerant stream. The passing of the effluent stream to the further heat exchanger and the passing of the pre-cooled hydrocarbon stream to the first inlet of the extraction column includes indirectly heat exchanging the effluent stream against the pre-cooled hydrocarbon stream.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 25, 2013
    Applicant: Shell Internationale Research Maatschappij B.V.
    Inventors: Cornelis Buijs, Francois Chantant
  • Publication number: 20130096359
    Abstract: A wet hydrocarbon stream (510) comprising at least methane and water, provided at a temperature equal to a first temperature, is cooled thereby lowering the temperature to a second temperature. In a water removal device (525) at least one wet disposal stream (590) comprising water is withdrawn from the wet hydrocarbon stream, at the second temperature. An effluent stream (560), comprising the wet hydrocarbon stream from which the at least one wet disposal stream (590) has been removed, is discharged from the water removal device (525) and passed to a further heat exchanger (535). At least one refrigerant stream (210) is also passed to the further heat exchanger (535), and both the effluent stream (560) and the refrigerant stream (210) are cooled in the further heat exchanger (535) by indirect heat exchanging against an evaporating refrigerant fraction (230).
    Type: Application
    Filed: June 28, 2011
    Publication date: April 18, 2013
    Inventors: Cornelis Buijs, Francois Chantant
  • Patent number: 7947121
    Abstract: A method for receiving fluid from a natural gas pipeline, the fluid comprising gaseous hydrocarbons, liquid hydrocarbons, water and optionally solids, the method comprising: (a) in a slug catcher (10), receiving the fluid comprising gaseous hydrocarbons, liquid hydrocarbons, water and optionally solids from at least one pipeline (20a, 20b, 20c) (b) in the slug catcher (10), separating at least a portion of the gaseous hydrocarbons from the rest of the fluid to leave a liquid mixture or a liquid/solid mixture; (c) directing at least a portion of the liquid mixture or liquid/solid mixture to a separation vessel (14), preferably a three-phase separation vessel; and (d) in the event of a surge of liquids and optionally solids to the slug catcher (10), directing at least a portion of the liquid mixture or the liquid/solid mixture from the slug catcher (10) to a surge vessel (12).
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: May 24, 2011
    Assignee: Shell Oil Company
    Inventors: Eduard Coenraad Bras, Cornelis Buijs, Jill Hui Chiun Chieng, Robert Klein Nagelvoort
  • Publication number: 20090133578
    Abstract: A method for receiving fluid from a natural gas pipeline, the fluid comprising gaseous hydrocarbons, liquid hydrocarbons, water and optionally solids, the method comprising: (a) in a slug catcher (10), receiving the fluid comprising gaseous hydrocarbons, liquid hydrocarbons, water and optionally solids from at least one pipeline (20a, 20b, 20c) (b) in the slug catcher (10), separating at least a portion of the gaseous hydrocarbons from the rest of the fluid to leave a liquid mixture or a liquid/solid mixture; (c) directing at least a portion of the liquid mixture or liquid/solid mixture to a separation vessel (14), preferably a three-phase separation vessel; and (d) in the event of a surge of liquids and optionally solids to the slug catcher (10), directing at least a portion of the liquid mixture or the liquid/solid mixture from the slug catcher (10) to a surge vessel (12).
    Type: Application
    Filed: November 27, 2006
    Publication date: May 28, 2009
    Inventors: Eduard Coenraad Bras, Cornelis Buijs, Jill Hui Chiun Chieng, Robert Klein Nagelvoort
  • Publication number: 20090064712
    Abstract: The present invention relates to a method of liquefying a natural gas stream, wherein the natural gas stream (10) is provided at a pressure of 30-80 bar, expanded to a pressure <35 bar, supplied to a gas/liquid separator (31) and therein into a vaporous stream (40) and a liquid stream (30). The pressure of the vaporous stream is increased to a pressure of at least 70 bar and the pressurized vaporous stream (90) is liquefied to obtain a liquefied natural gas stream.
    Type: Application
    Filed: April 10, 2006
    Publication date: March 12, 2009
    Inventors: Cornelis Buijs, Willem Dam, Emilius Carolus Joanes Nicolaas De Jong
  • Publication number: 20090064713
    Abstract: The present invention relates to a method of liquefying a natural gas stream, wherein the natural gas stream (10) is provided at a pressure of 10-80 bar, supplied to a gas/liquid separator (31), and separated into a vaporous stream (40) and a liquid stream (30). The vaporous stream (40) is compressed to a pressure of at least 70, 84 bar heat exchanged against the vaporous stream (40), and liquefied to obtain a liquefied natural gas stream (100).
    Type: Application
    Filed: April 10, 2006
    Publication date: March 12, 2009
    Inventors: Cornelis Buijs, Willem Dam, Emilius Carolus Joanes Nicolaas De Jong
  • Publication number: 20080156036
    Abstract: Plant and method for liquefying natural gas. The plant comprises a common pre-cooling heat exchanger train (1), two natural gas liquids extraction units (100, 100?) and two main heat exchangers (200, 200?) to cool the overhead light fraction from its corresponding natural gas liquids extraction unit to liquefaction.
    Type: Application
    Filed: February 15, 2006
    Publication date: July 3, 2008
    Inventors: Cornelis Buijs, Robert Klein Nagelvoort
  • Publication number: 20080066493
    Abstract: Method of treating liquefied natural gas (1) to obtain a liquid stream (21) having a reduced content of components having low boiling points comprising expanding (3) the liquefied gas to expand to obtain expanded two-phase fluid; introducing the two-phase fluid into a column (10) below a gas-liquid contacting section (14); withdrawing from the bottom (16) a liquid-stream (17) having a reduced content of components having low boiling points; withdrawing from the top (23) of the column (10) a gaseous stream (25) enriched in components having low boiling points; heating the gaseous stream in a heat exchanger (27); compressing (30) the stream to fuel gas pressure to obtain fuel gas (33); separating a recycle stream (34a) from the fuel gas; at least partly condensing (27) the recycle stream to obtain a reflux stream (34b); and introducing the reflux stream (34b) into the column (10) above the contacting section (14).
    Type: Application
    Filed: July 12, 2005
    Publication date: March 20, 2008
    Inventors: Cornelis Buijs, Robert Nagelvoort, Johan Barend Pek, Cornelis Buijs, Robert Nagelvoort
  • Publication number: 20080066492
    Abstract: Method of treating liquefied natural gas (1) to obtain a liquid stream (21) having a reduced content of components having low boiling points comprising expanding (3) the liquefied gas to expand to obtain expanded two-phase fluid; introducing the two-phase fluid into a column (10) below a gas-liquid contacting section (14); withdrawing from the bottom (16) a liquid-stream (17) having a reduced content of components having low boiling points; withdrawing from the top (23) of the column (10) a gaseous stream (25) enriched in components having low boiling points; heating the gaseous stream in a heat exchanger (27); compressing (30) the stream to fuel gas pressure to obtain fuel gas (33); separating a recycle stream (34a) from the fuel gas; at least partly condensing (27) the recycle stream to obtain a reflux stream (34b); and introducing the reflux stream (34b) into the column (10) above the contacting section (14).
    Type: Application
    Filed: July 12, 2005
    Publication date: March 20, 2008
    Inventors: Cornelis Buijs, Robert Klein Nagelvoort, Johan Pek