Patents by Inventor Cornelis E. Timmering

Cornelis E. Timmering has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6498071
    Abstract: In the manufacture of a trench-gate semiconductor device, for example a MOSFET or an IGBT, a starting semiconductor body (10) has two top layers (13, 15) provided for forming the source and body regions. Gate material (11′) is provided in a trench (20) with a trench etchant mask (51, FIG. 2) still present so that the gate material (11′) forms a protruding step (30) from the adjacent surface (10a) of the semiconductor body, and a side wall spacer (32) is then formed in the step (30) to replace the mask (51). The source region (13) is formed self-aligned with the protruding trench-gate structure with a lateral extent determined by the spacer (32, FIG. 5), and the gate (11) is then provided with an insulating overlayer (18, FIG. 6).
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: December 24, 2002
    Assignee: Koninklijke Phillips Electronics N.V.
    Inventors: Erwin A. Hijzen, Cornelis E. Timmering, John R. Cutter
  • Patent number: 6368946
    Abstract: A method of manufacturing a semiconductor device with an epitaxial semiconductor zone, whereby a first layer of insulating material, a first layer of non-monocrystalline silicon, and a second layer of insulating material are provided in that order on a surface of a silicon wafer, a window with a steep wall is etched through the second layer of insulating material and the first layer of non-monocrystalline silicon, the wall of the window is provided with a protective layer, the first insulating layer is selectively etched away within the window and below an edge of the first layer of non-monocrystalline silicon adjoining the window such that both the edge of the first layer of non-monocrystalline silicon itself and the surface of the wafer become exposed within the window and below said edge, semiconductor material is selectively deposited such that the epitaxial semiconductor zone is formed on the exposed surface of the wafer, and an edge of polycrystalline semiconductor material connected to the epitaxi
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: April 9, 2002
    Assignee: U.S. Phillips Corporation
    Inventors: Ronald Dekker, Cornelis E. Timmering, Doede Terpstra, Wiebe B. De Boer
  • Patent number: 6319777
    Abstract: In the manufacture of semiconductor devices that have an electrode (11,41) in an insulated trench (20), for example a trench-gate MOSFET, process steps are performed to line the trench walls with a lower insulating layer (21) in a lower part of the trench and with a thicker upper insulating layer (22) in an upper part of the trench.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: November 20, 2001
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Raymond J. E. Hueting, Cornelis E. Timmering, Henricus G. R. Maas
  • Publication number: 20010036704
    Abstract: In the manufacture of semiconductor devices that have an electrode (11,41) in an insulated trench (20), for example a trench-gate MOSFET, process steps are performed to line the trench walls with a lower insulating layer (21) in a lower part of the trench and with a thicker upper insulating layer (22) in an upper part of the trench.
    Type: Application
    Filed: April 24, 2001
    Publication date: November 1, 2001
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Raymond J.E. Hueting, Cornelis E. Timmering, Henricus G.R. Maas
  • Patent number: 6300210
    Abstract: The invention relates to the manufacture of a so-called double poly bipolar transistor. In a layer structure of a first insulating layer (4), a polycrystalline layer (5) of silicon and a second insulating layer (6), an opening (7) is formed which extends to a monocrystalline part of the semiconductor body (10), a third insulating layer (8) being provided on the bottom of the opening (7). Via the opening (7) at least a part (1A) of the base (1) is formed. By means of a further opening (9) in the third insulating layer (8), the emitter (3) is formed. A drawback of the known method resides in that the transistors obtained by means of said method exhibit a relatively great spread in electrical characteristics, such as a base current which is not ideal and demonstrates a spread.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: October 9, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Johan H. Klootwijk, Cornelis E. Timmering
  • Publication number: 20010009800
    Abstract: In the manufacture of a trench-gate semiconductor device, for example a MOSFET or an IGBT, a starting semiconductor body (10) has two top layers (13, 15) provided for forming the source and body regions. Gate material (11′) is provided in a trench (20) with a trench etchant mask (51, FIG. 2) still present so that the gate material (11′) forms a protruding step (30) from the adjacent surface (10a) of the semiconductor body, and a side wall spacer (32) is then formed in the step (30) to replace the mask (51). The source region (13) is formed self-aligned with the protruding trench-gate structure with a lateral extent determined by the spacer (32, FIG. 5), and the gate (11) is then provided with an insulating overlayer (18, FIG. 6).
    Type: Application
    Filed: November 29, 2000
    Publication date: July 26, 2001
    Applicant: U.S. PHILIPS CORPORATION
    Inventors: Erwin A. Hijzen, Cornelis E. Timmering, John R. Cutter
  • Patent number: 6100152
    Abstract: The invention relates to a method of manufacturing a discrete or integrated bipolar transistor comprising a base (1A), an emitter (2) and a collector (3). The base (1A) and a connecting region (1B) of the base (1A) are formed by providing a semiconductor body (10) with a doped semiconducting layer (1) which locally borders on a monocrystalline part (3) of the semiconductor body which forms the collector (3). Outside said base, the layer (1) borders on a non-monocrystalline part (4) of the semiconductor body (10) and forms a non-monocrystalline connecting region (1B) of the base (1A). By means of a mask (5), the doping concentration of the layer (1) outside the mask (5) is selectively increased, resulting in a highly conducting connection region (1B) and a very fast transistor. In the known method, an ion implantation is used for this purpose.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: August 8, 2000
    Assignee: U.S. Philips Corporation
    Inventors: Catharina H. H. Emons, Doede Terpstra, Cornelis E. Timmering, Wiebe B. De Boer
  • Patent number: 5554256
    Abstract: A method of manufacturing a semiconductor device comprising a semiconductor body (1) with field insulation regions (14) formed by grooves (10; 24) filled with an insulating material (13) is disclosed. The grooves (10; 24) are etched into the semiconductor body (1) with the use of an etching mask (9) formed on an auxiliary layer (6) provided on a surface (5) of the semiconductor body (1). The auxiliary layer (6) is removed from the portion (11) of the surface (5) situated next to the etching mask (9) before the grooves (10; 24) are etched into the semiconductor body (1), and the auxiliary layer (6) is removed from the edge (12) of the surface (5) situated below the etching mask (9) after the grooves (10; 24) have been etched into the semiconductor body. Furthermore, a layer (13) of the insulating material is deposited on the semiconductor body (1), whereby the grooves (10; 24) are filled and the edge (12) of the surface (5) situated below the etching mask (9) is covered.
    Type: Grant
    Filed: September 22, 1994
    Date of Patent: September 10, 1996
    Assignee: U.S. Philips Corporation
    Inventors: Armand Pruijmboom, Ronald Koster, Cornelis E. Timmering, Ronald Dekker