Patents by Inventor Cory BOMBERGER

Cory BOMBERGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136277
    Abstract: A device includes a device level having a metallization structure coupled to a semiconductor device and a transistor above the device level. The transistor has a body including a single crystal group III-V or group IV semiconductor material, a source structure on a first portion of the body and a drain structure on a second portion of the body, where the source structure is separate from the drain structure. The transistor further includes a gate structure including a first gate structure portion in a recess in the body and a second gate structure portion between the source structure and the drain structure. A source contact is coupled with the source structure and a drain contact is coupled with the drain structure. The source contact is in contact with the metallization structure in the device level.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Ryan Keech, Cory Bomberger, Cheng-Ying Huang, Ashish Agrawal, Willy Rachmady, Anand Murthy
  • Patent number: 11929320
    Abstract: A device includes a device level having a metallization structure coupled to a semiconductor device and a transistor above the device level. The transistor has a body including a single crystal group III-V or group IV semiconductor material, a source structure on a first portion of the body and a drain structure on a second portion of the body, where the source structure is separate from the drain structure. The transistor further includes a gate structure including a first gate structure portion in a recess in the body and a second gate structure portion between the source structure and the drain structure. A source contact is coupled with the source structure and a drain contact is coupled with the drain structure. The source contact is in contact with the metallization structure in the device level.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: March 12, 2024
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Ryan Keech, Cory Bomberger, Cheng-Ying Huang, Ashish Agrawal, Willy Rachmady, Anand Murthy
  • Patent number: 11887988
    Abstract: Thin film transistor structures may include a regrown source or drain material between a channel material and source or drain contact metallization. The source or drain material may be selectively deposited at low temperatures to backfill recesses formed in the channel material. Electrically active dopant impurities may be introduced in-situ during deposition of the source or drain material. The source or drain material may overlap a portion of a gate electrode undercut by the recesses. With channel material of a first composition and source or drain material of a second composition, thin film transistor structures may display low external resistance and high channel mobility.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Ashish Agrawal, Jack Kavalieros, Anand Murthy, Gilbert Dewey, Matthew Metz, Willy Rachmady, Cheng-Ying Huang, Cory Bomberger
  • Publication number: 20230343826
    Abstract: Embodiments of the disclosure include integrated circuit structures having source or drain dopant diffusion blocking layers. In an example, an integrated circuit structure includes a fin including silicon. A gate structure is over a channel region of the fin, the gate structure having a first side opposite a second side. A first source or drain structure is at the first side of the gate structure. A second source or drain structure is at the second side of the gate structure. The first and second source or drain structures include a first semiconductor layer and a second semiconductor layer. The first semiconductor layer is in contact with the channel region of the fin, and the second semiconductor layer is on the first semiconductor layer. The first semiconductor layer has a greater concentration of germanium than the second semiconductor layer, and the second semiconductor layer includes boron dopant impurity atoms.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Anupama BOWONDER, Aaron BUDREVICH, Tahir GHANI
  • Publication number: 20230317789
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having source or drain structures with selective silicide contacts thereon are described. In an example, an integrated circuit structure includes a plurality of stacks of nanowires. A plurality of epitaxial source or drain structures is around ends of corresponding ones of the stacks of nanowires. A silicide layer is on an entirety of a top surface of the plurality of epitaxial source or drain structures. A conductive trench contact is on the silicide layer. A dielectric layer is vertically intervening between a portion of the conductive trench contact and the silicide layer.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Dan S. LAVRIC, Anand S. MURTHY, Cory BOMBERGER, Subrina RAFIQUE, Chi-Hing CHOI, Mohammad HASAN
  • Publication number: 20230275157
    Abstract: Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.
    Type: Application
    Filed: May 4, 2023
    Publication date: August 31, 2023
    Inventors: Cory BOMBERGER, Anand S. MURTHY, Tahir GHANI, Anupama BOWONDER
  • Patent number: 11735630
    Abstract: Embodiments of the disclosure include integrated circuit structures having source or drain dopant diffusion blocking layers. In an example, an integrated circuit structure includes a fin including silicon. A gate structure is over a channel region of the fin, the gate structure having a first side opposite a second side. A first source or drain structure is at the first side of the gate structure. A second source or drain structure is at the second side of the gate structure. The first and second source or drain structures include a first semiconductor layer and a second semiconductor layer. The first semiconductor layer is in contact with the channel region of the fin, and the second semiconductor layer is on the first semiconductor layer. The first semiconductor layer has a greater concentration of germanium than the second semiconductor layer, and the second semiconductor layer includes boron dopant impurity atoms.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand Murthy, Anupama Bowonder, Aaron Budrevich, Tahir Ghani
  • Publication number: 20230207651
    Abstract: Gate-all-around integrated circuit structures having source or drain structures with substrate connection portions, and methods of fabricating gate-all-around integrated circuit structures having source or drain structures with substrate connection portions, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires. A gate stack is over the vertical arrangements of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. One or both of the first or second epitaxial source or drain structures has an upper portion and a lower epitaxial extension portion.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Mohammad HASAN, Nitesh KUMAR, Rushabh SHAH, Anand S. MURTHY, Pratik PATEL, Tahir GHANI, Tricia MEYER, Cory BOMBERGER, Glenn A. GLASS, Stephen M. CEA, Anant H. JAHAGIRDAR
  • Publication number: 20230197817
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) titanium silicide conductive contact material on the second pEPI region.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Debaleena NANDI, Cory BOMBERGER, Diane LANCASTER, Gilbert DEWEY, Sandeep K. PATIL, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20230197862
    Abstract: Techniques are provided herein to form a semiconductor diode device within an integrated circuit. In an example, a diode device includes separate fins or bodies of semiconductor material that are separated by an insulating barrier. One of the fins or bodies is doped with n-type dopants while the other fin or body is doped with p-type dopants. Each of the first and second fins or bodies includes an epitaxially grown region over it that includes the corresponding dopant type with a higher dopant concentration. Additionally, each of the first and second fins or bodies includes another epitaxially grown region on the backside (e.g., under the fins or bodies) of the corresponding dopant type with a lower dopant concentration compared to the epitaxial regions on the opposite side of the fins or bodies. An undoped or lightly doped layer may also be formed between the epitaxially grown regions on the backside.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Prashant Majhi, Anand Murthy, Cory Bomberger, Koustav Ganguly
  • Publication number: 20230197785
    Abstract: Integrated circuit structures having source or drain structures with low resistivity are described. In an example, integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each epitaxial structure of the first and second source or drain structures include silicon, germanium and boron. The first and second source or drain structures have a resistivity less than or equal to 0.3 mOhm·cm.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 22, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Suresh VISHWANATH
  • Patent number: 11682731
    Abstract: Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 20, 2023
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand S. Murthy, Tahir Ghani, Anupama Bowonder
  • Patent number: 11621325
    Abstract: Integrated circuit structures having source or drain structures with low resistivity are described. In an example, integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each epitaxial structure of the first and second source or drain structures include silicon, germanium and boron. The first and second source or drain structures have a resistivity less than or equal to 0.3 mOhm·cm.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand Murthy, Suresh Vishwanath
  • Publication number: 20230101725
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise germanium and boron, and a protective layer comprises silicon, and germanium that at least partially covers the epitaxial source or drain structures. A conductive contact comprising titanium silicide is on the epitaxial source or drain structures.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Debaleena NANDI, Mauro J. KOBRINSKY, Gilbert DEWEY, Chi-hing CHOI, Harold W. Kennel, Brian J. KRIST, Ashkar ALIYARUKUNJU, Cory BOMBERGER, Rushabh SHAH, Rishabh MEHANDRU, Stephen M. CEA, Chanaka MUNASINGHE, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20230087399
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) a capping layer comprising silicon over the second pEPI region. A conductive contact material comprising titanium is on the capping layer.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Debaleena NANDI, Cory BOMBERGER, Rushabh SHAH, Gilbert DEWEY, Nazila HARATIPOUR, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20230082276
    Abstract: Gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin, the fin including a defect modification layer on a first semiconductor layer, and a second semiconductor layer on the defect modification layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 16, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Susmita GHOSE, Siddharth CHOUKSEY
  • Publication number: 20230071989
    Abstract: Gate-all-around integrated circuit structures having germanium nanowire channel structures, and methods of fabricating gate-all-around integrated circuit structures having germanium nanowire channel structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin, each of the nanowires including germanium, and the fin including a defect modification layer on a first semiconductor layer, a second semiconductor layer on the defect modification layer, and a third semiconductor layer on the second semiconductor layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: November 10, 2022
    Publication date: March 9, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Susmita GHOSE, Zachary GEIGER
  • Publication number: 20230058558
    Abstract: Gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, and methods of fabricating gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures includes vertically discrete portions aligned with the first vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures includes vertically discrete portions aligned with the second vertical arrangement of horizontal nanowires. A conductive contact structure is laterally between and in contact with the one of the first pair of epitaxial source or drain structures and the one of the second pair of epitaxial source or drain structures.
    Type: Application
    Filed: November 7, 2022
    Publication date: February 23, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Mark T. BOHR, Tahir GHANI, Biswajeet GUHA
  • Publication number: 20230043665
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having channel structures with sub-fin dopant diffusion blocking layers are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. The lower fin portion includes a dopant diffusion blocking layer on a first semiconductor layer doped to a first conductivity type. The upper fin portion includes a portion of a second semiconductor layer, the second semiconductor layer on the dopant diffusion blocking layer. An isolation structure is along sidewalls of the lower fin portion. A gate stack is over a top of and along sidewalls of the upper fin portion, the gate stack having a first side opposite a second side. A first source or drain structure at the first side of the gate stack.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Stephen CEA, Biswajeet GUHA, Anupama BOWONDER, Tahir GHANI
  • Publication number: 20220416043
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise germanium and boron, and a protective layer comprising germanium, silicon and boron that at least partially covers the epitaxial source or drain structures to provide low contact resistivity.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Cory BOMBERGER, Anand S. MURTHY, Rushabh SHAH, Kevin COOK, Anupama BOWONDER