Patents by Inventor Cory Gloeckner

Cory Gloeckner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11765523
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: September 19, 2023
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Publication number: 20230047703
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Application
    Filed: July 21, 2022
    Publication date: February 16, 2023
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Patent number: 11399240
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: July 26, 2022
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Publication number: 20210250706
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Application
    Filed: January 21, 2021
    Publication date: August 12, 2021
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Patent number: 10904676
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 26, 2021
    Assignee: Regents of the University of Minnesota
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Publication number: 20190342675
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 7, 2019
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Patent number: 10362415
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 23, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner
  • Publication number: 20170318397
    Abstract: A hearing system to activate an auditory system using cerebrospinal fluids includes at least one processor configured to receive an audio signal captured using a sound sensor (e.g., a microphone), extract temporal and spectral features from the audio signal, and create modulated ultrasound signals in a range of 20 Hz to 20 kHz with ultrasound carrier frequencies in the range of 50 kHz to 4 MHz, which are ultrasound frequencies that are well-suited to reach the cerebrospinal fluids (e.g., can pass across the skull/bones to reach the cerebrospinal fluids). The system further includes at least one ultrasonic transducer which receives the modulated signal and delivers the modulated signal to the body and activates the auditory system via vibration of cerebrospinal fluids that vibrate cochlear fluids, bypassing the normal conductive pathway that uses middle ear bones and minimizing bone conduction and distortion through the skull.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 2, 2017
    Inventors: Hubert H. Lim, Mark Hamilton, Hongsun Guo, Cory Gloeckner