Patents by Inventor Cory Mark Bloome

Cory Mark Bloome has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11086295
    Abstract: Methods, systems, and computer programs for multi-tool additive manufacturing include a method including: slicing a received model into a series of layers; determining one or more separation starting points, each being a location of two adjoining portions of the model that are to be manufactured by respective additive manufacturing robots; and determining an offset for each of the one or more separation starting points in each layer of the series of layers based on a threshold acceptable print time, each offset in a layer determining a seam location in the layer that is different from a seam location in at least one adjacent layer in the series of layers, and seam offsets determined for the series of layers increase an estimated print time, for manufacturing of the series of layers by the two or more additive manufacturing robots, to no more than the threshold acceptable print time.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: August 10, 2021
    Assignee: Autodesk, Inc.
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10906291
    Abstract: A fused filament fabrication three dimensional printing system includes a build platform, an extruder for one or more deposition materials, the extruder including at least one nozzle movable relative to the build platform, and a controller configured to control the relative movement between the build platform and the nozzle, and to cause material to be extruded out of the nozzle to form a 3D object on the build platform. The build platform includes a first plate on which the 3D object is formed, a second plate that is positioned vertically below the first plate and defines at least one gap between the first and second plates, and a heating element that is configured to heat the second plate. The first plate defines at least one opening that is configured to allow passage of material extruded from the nozzle into the at least one gap between the first and second plates.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 2, 2021
    Assignee: Autodesk, Inc.
    Inventors: Cory Mark Bloome, James Sherwood Page, Michael Anthony Crockett, Gregory Daniel Friedland, Andreas Linas Bastian
  • Publication number: 20200233399
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a multi-tool additive manufacturing system that executes in a three-dimensional build volume. In one aspect, a system includes a build platform; a support; a first robot coupled with the support and configured to operate in a build volume defined by the build platform, wherein the first robot includes a first additive manufacturing tool; a second robot coupled with the support and configured to operate in the build volume, wherein the second robot includes a second additive manufacturing tool; wherein the first robot and the second robot are programmed to coordinate simultaneous application; and wherein a first tool path of the first additive manufacturing tool in the first region abuts or overlaps with a second tool path of the second additive manufacturing tool in the second region so as to form a bond.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 23, 2020
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10710308
    Abstract: An additive manufacturing system, which can include a 3D printer, includes in at least one aspect: a build platform; a carriage and a rack configured to hold different manufacturing tools, including an extrusion tool; a heating device associated with the extrusion tool; a 3D motion system configured to move the carriage between the rack and a build space associated with the build platform, and to move the carriage within the build space associated with the build platform; and one or more computers programmed to trigger the heating device to begin pre-heating the extrusion tool at a point before mounting of the extrusion tool to the carriage by the 3D motion system, such that the material in the extrusion tool is melted by a point in the manufacturing process when the extrusion tool will be mounted on the carriage and in position to extrude material in the build space.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: July 14, 2020
    Assignee: Autodesk, Inc.
    Inventor: Cory Mark Bloome
  • Patent number: 10620611
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a multi-tool additive manufacturing system that executes in a three-dimensional build volume. In one aspect, a system includes a build platform; a support; a first robot coupled with the support and configured to operate in a build volume defined by the build platform, wherein the first robot includes a first additive manufacturing tool; a second robot coupled with the support and configured to operate in the build volume, wherein the second robot includes a second additive manufacturing tool; wherein the first robot and the second robot are programmed to coordinate simultaneous application; and wherein a first tool path of the first additive manufacturing tool in the first region abuts or overlaps with a second tool path of the second additive manufacturing tool in the second region so as to form a bond.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: April 14, 2020
    Assignee: Autodesk, Inc.
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10481586
    Abstract: A hot end associated with an extruder for a Fused Filament Fabrication (FFF) three dimensional (3D) printer includes, in at least one aspect of the subject matter described in this specification: a heater; a temperature sensor coupled with the heater; an FFF material delivery channel; a heat sink coupled with the FFF material delivery channel; a nozzle coupled with the FFF material delivery channel and with the heater, the nozzle having a total included angle of less than or equal to sixty degrees and greater than or equal to ten degrees, with respect to a nozzle target point; and a cooling delivery system for at least the heat sink; where the heat sink, the heater, the temperature sensor, the FFF material delivery channel, the nozzle, and the cooling delivery system are all contained within a volume defined by the total included angle with respect to the nozzle target point.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: November 19, 2019
    Assignee: Autodesk, Inc.
    Inventors: James Sherwood Page, Peter J. Schmehl, Cory Mark Bloome, Aljosa Kemperle
  • Publication number: 20180361671
    Abstract: An additive manufacturing system, which can include a 3D printer, includes in at least one aspect: a build platform; a carriage and a rack configured to hold different manufacturing tools, including an extrusion tool; a heating device associated with the extrusion tool; a 3D motion system configured to move the carriage between the rack and a build space associated with the build platform, and to move the carriage within the build space associated with the build platform; and one or more computers programmed to trigger the heating device to begin pre-heating the extrusion tool at a point before mounting of the extrusion tool to the carriage by the 3D motion system, such that the material in the extrusion tool is melted by a point in the manufacturing process when the extrusion tool will be mounted on the carriage and in position to extrude material in the build space.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 20, 2018
    Inventor: Cory Mark Bloome
  • Publication number: 20180253080
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a multi-tool additive manufacturing system that executes in a three-dimensional build volume. In one aspect, a system includes a build platform; a support; a first robot coupled with the support and configured to operate in a build volume defined by the build platform, wherein the first robot includes a first additive manufacturing tool; a second robot coupled with the support and configured to operate in the build volume, wherein the second robot includes a second additive manufacturing tool; wherein the first robot and the second robot are programmed to coordinate simultaneous application; and wherein a first tool path of the first additive manufacturing tool in the first region abuts or overlaps with a second tool path of the second additive manufacturing tool in the second region so as to form a bond.
    Type: Application
    Filed: September 9, 2016
    Publication date: September 6, 2018
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Publication number: 20170190120
    Abstract: A fused filament fabrication three dimensional printing system includes a build platform, an extruder for one or more deposition materials, the extruder including at least one nozzle movable relative to the build platform, and a controller configured to control the relative movement between the build platform and the nozzle, and to cause material to be extruded out of the nozzle to form a 3D object on the build platform. The build platform includes a first plate on which the 3D object is formed, a second plate that is positioned vertically below the first plate and defines at least one gap between the first and second plates, and a heating element that is configured to heat the second plate. The first plate defines at least one opening that is configured to allow passage of material extruded from the nozzle into the at least one gap between the first and second plates.
    Type: Application
    Filed: October 28, 2016
    Publication date: July 6, 2017
    Inventors: Cory Mark Bloome, James Sherwood Page, Michael Anthony Crockett, Gregory Daniel Friedland, Andreas Linas Bastian
  • Publication number: 20170072632
    Abstract: A hot end associated with an extruder for a Fused Filament Fabrication (FFF) three dimensional (3D) printer includes, in at least one aspect of the subject matter described in this specification: a heater; a temperature sensor coupled with the heater; an FFF material delivery channel; a heat sink coupled with the FFF material delivery channel; a nozzle coupled with the FFF material delivery channel and with the heater, the nozzle having a total included angle of less than or equal to sixty degrees and greater than or equal to ten degrees, with respect to a nozzle target point; and a cooling delivery system for at least the heat sink; where the heat sink, the heater, the temperature sensor, the FFF material delivery channel, the nozzle, and the cooling delivery system are all contained within a volume defined by the total included angle with respect to the nozzle target point.
    Type: Application
    Filed: July 28, 2016
    Publication date: March 16, 2017
    Inventors: James Sherwood Page, Peter J. Schmehl, Cory Mark Bloome, Aljosa Kemperle
  • Publication number: 20160332378
    Abstract: Systems and techniques relating to three dimensional (3D) delta printers, such as Fused Filament Fabrication (FFF) 3D delta printers include, in at least one aspect, a 3D delta printer that includes a build platform; a 3D printer delta motion system; and a space frame configured and arranged to support the 3D printer delta motion system as the 3D printer delta motion system moves relative to the build platform; wherein the space frame includes multiple triangular units surrounding a build volume above the build platform.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 17, 2016
    Inventors: James Sherwood Page, Cory Mark Bloome, Kenneth Lawrence Mejia
  • Patent number: D813918
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: March 27, 2018
    Assignee: Autodesk, Inc.
    Inventors: James Sherwood Page, Cory Mark Bloome