Patents by Inventor Costel Biloiu

Costel Biloiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220248523
    Abstract: An apparatus may include a drift tube assembly, the drift tube assembly defining a triple gap configuration, and arranged to accelerate and transmit an ion beam along abeam path. The apparatus may include a resonator, to output an RF signal to the drift tube assembly, and an RF quadrupole triplet, connected to the drift tube assembly, and arranged circumferentially around the beam path.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Frank Sinclair, Wai-Ming Tam, Costel Biloiu, William Davis Lee
  • Patent number: 11361935
    Abstract: An extraction plate for an ion beam system. The extraction plate may include an insulator body that includes a peripheral portion, to connect to a first side of a plasma chamber, and further includes a central portion, defining a concave shape. As such, an extraction aperture may be arranged along a first surface of the central portion, where the first surface is oriented at a high angle with respect to the first side. The extraction plate may further include a patterned electrode, comprising a first portion and a second portion, affixed to an outer side of the insulator body, facing away from the plasma chamber, wherein the first portion is separated from the second portion by an insulating gap.
    Type: Grant
    Filed: November 7, 2020
    Date of Patent: June 14, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Costel Biloiu, Jay R. Wallace, Kevin M. Daniels, Frank Sinclair, Christopher Campbell
  • Publication number: 20220174810
    Abstract: An apparatus may include a drift tube assembly, arranged to transmit an ion beam. The drift tube assembly may include a first ground electrode; an RF drift tube assembly, disposed downstream of the first ground electrode; and a second ground electrode, disposed downstream of the RF drift tube assembly. The RF drift tube assembly may define a triple gap configuration. The apparatus may include a resonator, where the resonator comprises a toroidal coil, having a first end, connected to a first RF drift tube of the RF drift tube assembly, and a second end, connected to a second RF drift tube of the RF drift tube assembly.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 2, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Costel Biloiu, Charles T. Carlson, Frank Sinclair, Paul J. Murphy, David T. Blahnik
  • Publication number: 20220148843
    Abstract: An extraction plate for an ion beam system. The extraction plate may include an insulator body that includes a peripheral portion, to connect to a first side of a plasma chamber, and further includes a central portion, defining a concave shape. As such, an extraction aperture may be arranged along a first surface of the central portion, where the first surface is oriented at a high angle with respect to the first side. The extraction plate may further include a patterned electrode, comprising a first portion and a second portion, affixed to an outer side of the insulator body, facing away from the plasma chamber, wherein the first portion is separated from the second portion by an insulating gap.
    Type: Application
    Filed: November 7, 2020
    Publication date: May 12, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Costel Biloiu, Jay R. Wallace, Kevin M. Daniels, Frank Sinclair, Christopher Campbell
  • Patent number: 11270864
    Abstract: Disclosed herein are approaches for adjusting extraction slits of an extraction plate using a set of adjustable beam blockers. In one approach, an ion extraction optics may include an extraction plate including a first opening and a second opening, and a first beam blocker extending over the first opening and a second beam blocker extending over the second opening. Each of the first and second beam blockers may include an inner slit defined by a first distance between an inner edge and the extraction plate, and an outer slit defined by a second distance between an outer edge and the extraction plate, wherein the first and second beam blockers are movable to vary at least one of the first distance and the second distance. As a result, extraction through the inner and outer slits of ion beamlets characterized by similar mean angles may be achieved.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: March 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Costel Biloiu, Adam Calkins, Alexander C. Kontos, James J. Howarth
  • Publication number: 20220020557
    Abstract: An ion beam processing system including a plasma chamber, a plasma plate, disposed alongside the plasma chamber, the plasma plate defining a first extraction aperture, a beam blocker, disposed within the plasma chamber and facing the extraction aperture, a blocker electrode, disposed on a surface of the beam blocker outside of the plasma chamber, and an extraction electrode disposed on a surface of the plasma plate outside of the plasma chamber.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jay R. Wallace, Costel Biloiu, Kevin M. Daniels
  • Patent number: 11226439
    Abstract: Optical grating components and methods of forming are provided. In some embodiments, a method includes providing a substrate, and etching a plurality of trenches into the substrate to form an optical grating. The optical grating may include a plurality of angled trenches, wherein a depth of a first trench of the plurality of trenches varies between at least one of the following: a first lengthwise end of the first trench and a second lengthwise end of the first trench, and between a first side of the first trench and a second side of the first trench.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 18, 2022
    Assignee: APPLIED Materials, Inc.
    Inventors: Joseph C. Olson, Ludovic Godet, Costel Biloiu
  • Publication number: 20210391155
    Abstract: A processing system may include a plasma chamber operable to generate a plasma, and an extraction assembly, arranged along a side of the plasma chamber. The extraction assembly may include an extraction plate including an extraction aperture, the extraction plate having a non-planar shape, and generating an extracted ion beam at a high angle of incidence with respect to a perpendicular to a plane of a substrate, when the plane of the substrate is arranged parallel to the side of the plasma chamber.
    Type: Application
    Filed: January 27, 2021
    Publication date: December 16, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Christopher Campbell, Costel Biloiu, Peter F. Kurunczi, Jay R. Wallace, Kevin M. Daniels, Kevin T. Ryan, Minab B. Teferi, Frank Sinclair, Joseph C. Olson
  • Publication number: 20210343500
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B. Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Publication number: 20210305001
    Abstract: Disclosed herein are approaches for adjusting extraction slits of an extraction plate using a set of adjustable beam blockers. In one approach, an ion extraction optics may include an extraction plate including a first opening and a second opening, and a first beam blocker extending over the first opening and a second beam blocker extending over the second opening. Each of the first and second beam blockers may include an inner slit defined by a first distance between an inner edge and the extraction plate, and an outer slit defined by a second distance between an outer edge and the extraction plate, wherein the first and second beam blockers are movable to vary at least one of the first distance and the second distance. As a result, extraction through the inner and outer slits of ion beamlets characterized by similar mean angles may be achieved.
    Type: Application
    Filed: March 24, 2020
    Publication date: September 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Costel Biloiu, Adam Calkins, Alexander C. Kontos, James J. Howarth
  • Patent number: 11127556
    Abstract: In one embodiment, an ion extraction optics for extracting a plurality of ion beams is provided. The ion extraction optics may include, an extraction plate, the extraction plate defining a cut-out region, the cut-out region being elongated along a first direction. The extraction apparatus may include a slidable insert, the slidable insert disposed to overlap the cut-out region, and slidably movable with respect to the extraction plate, along the first direction, wherein the slidable insert and cut-out region define a first aperture and a second aperture.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: September 21, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Costel Biloiu, Jon Ballou, James P. Buonodono
  • Patent number: 11094504
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 17, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Publication number: 20210210307
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B. Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Patent number: 11056319
    Abstract: An ion beam processing apparatus may include a plasma chamber, and a plasma plate, disposed alongside the plasma chamber, where the plasma plate defines a first extraction aperture. The apparatus may include a beam blocker, disposed within the plasma chamber and facing the extraction aperture. The apparatus may further include a non-planar electrode, disposed adjacent the beam blocker and outside of the plasma chamber; and an extraction plate, disposed outside the plasma plate, and defining a second extraction aperture, aligned with the first extraction aperture.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: July 6, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Appu Naveen Thomas, Tyler Rockwell, Frank Sinclair, Christopher Campbell
  • Publication number: 20210035779
    Abstract: An ion beam processing apparatus may include a plasma chamber, and a plasma plate, disposed alongside the plasma chamber, where the plasma plate defines a first extraction aperture. The apparatus may include a beam blocker, disposed within the plasma chamber and facing the extraction aperture. The apparatus may further include a non-planar electrode, disposed adjacent the beam blocker and outside of the plasma chamber; and an extraction plate, disposed outside the plasma plate, and defining a second extraction aperture, aligned with the first extraction aperture.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 4, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Appu Naveen Thomas, Tyler Rockwell, Frank Sinclair, Christopher Campbell
  • Publication number: 20200294755
    Abstract: An apparatus may include a housing including an entrance aperture, to receive an ion beam. The apparatus may include an exit aperture, disposed in the housing, downstream to the entrance aperture, the entrance aperture and the exit aperture defining a beam axis, extending therebetween. The apparatus may include an electrodynamic mass analysis assembly disposed in the housing and comprising an upper electrode assembly, disposed above the beam axis, and a lower electrode assembly, disposed below the beam axis. The apparatus may include an AC voltage assembly, electrically coupled to the upper electrode assembly and the lower electrode assembly, wherein the upper electrode assembly is arranged to receive an AC signal from the AC voltage assembly at a first phase angle, and wherein the lower electrode assembly is arranged to receive the AC signal at a second phase angle, the second phase angle 180 degrees shifted from the first phase angle.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Joseph C. Olson, Alexandre Likhanskii
  • Patent number: 10763072
    Abstract: An apparatus may include a housing including an entrance aperture, to receive an ion beam. The apparatus may include an exit aperture, disposed in the housing, downstream to the entrance aperture, the entrance aperture and the exit aperture defining a beam axis, extending therebetween. The apparatus may include an electrodynamic mass analysis assembly disposed in the housing and comprising an upper electrode assembly, disposed above the beam axis, and a lower electrode assembly, disposed below the beam axis. The apparatus may include an AC voltage assembly, electrically coupled to the upper electrode assembly and the lower electrode assembly, wherein the upper electrode assembly is arranged to receive an AC signal from the AC voltage assembly at a first phase angle, and wherein the lower electrode assembly is arranged to receive the AC signal at a second phase angle, the second phase angle 180 degrees shifted from the first phase angle.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Joseph C. Olson, Alexandre Likhanskii
  • Patent number: 10730082
    Abstract: A workpiece processing apparatus allowing in situ cleaning of metal deposited formed on the extraction plate and in the plasma chamber is disclosed. The apparatus includes an extraction plate having an extraction aperture through which the sputtering material is passed. The apparatus also includes a sealed volume disposed within the plasma chamber which is in communication with a cleaning aperture on the extraction plate. The sealed volume is in communication with a cleaning gas, which is excited by the plasma in the plasma chamber, and can be used to clean the exterior surface of the extraction plate. The feed gas used in the plasma chamber can be selected from a sputtering species and the cleaning gas. Since the volume in the sealed volume is separated from the rest of the plasma chamber, the cleaning of the extraction plate and the cleaning of the plasma chamber may be performed independently.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: August 4, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Glen F R Gilchrist, Costel Biloiu, Shurong Liang, Christopher R. Campbell, Vikram Singh
  • Publication number: 20200243308
    Abstract: A workpiece processing apparatus allowing independent control of the voltage applied to the shield ring and the workpiece is disclosed. The workpiece processing apparatus includes a platen. The platen includes a dielectric material on which a workpiece is disposed. A bias electrode is disposed beneath the dielectric material. A shield ring, which is constructed from a metal, ceramic, semiconductor or dielectric material, is arranged around the perimeter of the workpiece. A ring electrode is disposed beneath the shield ring. The ring electrode and the bias electrode may be separately powered. This allows the surface voltage of the shield ring to match that of the workpiece, which causes the plasma sheath to be flat. Additionally, the voltage applied to the shield ring may be made different from that of the workpiece to compensate for mismatches in geometries. This improves uniformity of incident angles along the outer edge of the workpiece.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Inventors: Alexandre Likhanskii, Maureen Petterson, John Hautala, Anthony Renau, Christopher A. Rowland, Costel Biloiu
  • Patent number: 10665433
    Abstract: A workpiece processing apparatus allowing independent control of the voltage applied to the shield ring and the workpiece is disclosed. The workpiece processing apparatus includes a platen. The platen includes a dielectric material on which a workpiece is disposed. A bias electrode is disposed beneath the dielectric material. A shield ring, which is constructed from a metal, ceramic, semiconductor or dielectric material, is arranged around the perimeter of the workpiece. A ring electrode is disposed beneath the shield ring. The ring electrode and the bias electrode may be separately powered. This allows the surface voltage of the shield ring to match that of the workpiece, which causes the plasma sheath to be flat. Additionally, the voltage applied to the shield ring may be made different from that of the workpiece to compensate for mismatches in geometries. This improves uniformity of incident angles along the outer edge of the workpiece.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: May 26, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexandre Likhanskii, Maureen Petterson, John Hautala, Anthony Renau, Christopher A. Rowland, Costel Biloiu