Patents by Inventor Craig A. Blue

Craig A. Blue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11534977
    Abstract: A system and method for improving additive manufacturing, including additive manufacturing toolpaths, is provided. The system and method includes a toolpath generator that obtains initial toolpaths of an object, identifies isolated paths in the toolpaths, and adds bridge connections between neighboring isolated paths in each layer to improve the toolpaths. The bridge connections facilitate the continuous and non-stop deposition of each layer according to improved toolpaths during additive manufacture, which can reduce total deposition time and improve the resultant additive manufacture.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 27, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Seokpum Kim, Vlastimil Kune, Ahmed A. Hassen, John M. Lindahl, Brian K. Post, Alex C. Roschli, Phillip C. Chesser, Michael C. Borish, Gregory D. Dreifus, Lonnie J. Love, Craig A. Blue, Bentley T. Beard, II
  • Patent number: 11325281
    Abstract: A method for rapid manufacturing of three dimensional discontinuous fiber preforms is provided. The method includes the deposition of a polymeric material containing fibers on a surface to form a tailored charge for compression molding. The reinforced polymeric material may be a thermoplastic or a reactive polymer with viscosity low enough to allow flow through an orifice during deposition, yet high enough zero shear viscosity to retain the approximate shape of the deposited charge. The material can be deposited in a predetermined pattern to induce the desired mechanical properties through alignment of the fibers. This deposition can be performed in a single layer or in multiple layers. The alignment is achieved passively by shear alignment of the fibers or actively through fiber orientation control or mixing. The fibers can be of the desired material, length, and morphology, including short and long filaments.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: May 10, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Vlastimil Kunc, Craig A. Blue, Ahmed A. Hassen, John M. Lindahl, Lonnie J. Love, Brian K. Post
  • Publication number: 20200230888
    Abstract: A system and method for improving additive manufacturing, including additive manufacturing toolpaths, is provided. The system and method includes a toolpath generator that obtains initial toolpaths of an object, identifies isolated paths in the toolpaths, and adds bridge connections between neighboring isolated paths in each layer to improve the toolpaths. The bridge connections facilitate the continuous and non-stop deposition of each layer according to improved toolpaths during additive manufacture, which can reduce total deposition time and improve the resultant additive manufacture.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 23, 2020
    Inventors: Seokpum Kim, Vlastimil Kunc, Ahmed A. Hassen, John M. Lindahl, Brian K. Post, Alex C. Roschli, Phillip C. Chesser, Michael C. Borish, Gregory D. Dreifus, Lonnie J. Love, Craig A. Blue, Bentley T. Beard, II
  • Publication number: 20200023556
    Abstract: A method for rapid manufacturing of three dimensional discontinuous fiber preforms is provided. The method includes the deposition of a polymeric material containing fibers on a surface to form a tailored charge for compression molding. The reinforced polymeric material may be a thermoplastic or a reactive polymer with viscosity low enough to allow flow through an orifice during deposition, yet high enough zero shear viscosity to retain the approximate shape of the deposited charge. The material can be deposited in a predetermined pattern to induce the desired mechanical properties through alignment of the fibers. This deposition can be performed in a single layer or in multiple layers. The alignment is achieved passively by shear alignment of the fibers or actively through fiber orientation control or mixing. The fibers can be of the desired material, length, and morphology, including short and long filaments.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 23, 2020
    Inventors: Vlastimil Kunc, Craig A. Blue, Ahmed A. Hassen, John M. Lindahl, Lonnie J. Love, Brian K. Post
  • Patent number: 9884444
    Abstract: An additive manufacturing extrusion head that includes a heated nozzle for accepting a feedstock and extruding the feedstock onto a substrate at a deposition plane, the nozzle having a longitudinal extrusion axis. A reciprocating platen surrounds the nozzle, the platen operable to reciprocate along the extrusion axis at or above the deposition plane as the nozzle extrudes feedstock onto the substrate; and wherein the platen flattens the extruded feedstock such that it does not protrude above the deposition plane as the extrusion head traverses over the substrate.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 6, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Randall F. Lind, Craig A. Blue, Lonnie J. Love, Brian K. Post, Peter D. Lloyd
  • Publication number: 20170320267
    Abstract: An additive manufacturing machine includes a nozzle assembly with a noncircular, rotatable outlet. The nozzle assembly deposits a bead of material having a width that is defined by the angular orientation of the noncircular shaped outlet with respect to the material deposition path direction. The combination of high material deposition rate and fine resolution save time and energy while also producing high-quality parts.
    Type: Application
    Filed: May 3, 2016
    Publication date: November 9, 2017
    Inventors: Randall F. Lind, Brian K. Post, Lonnie J. Love, Peter D. Lloyd, Charles Lynn Carnal, Craig A. Blue, Vlastimil Kunc
  • Publication number: 20170151728
    Abstract: Several examples of additive manufacturing machines and methods for depositing a bead of composite polymer material having continuous fiber reinforcement are disclosed. A length of fiber reinforcement is provided to a nozzle. The fiber reinforcement is embedded into a stream of a base polymer material at the nozzle and deposited as a bead of composite polymer material having fiber reinforcement. The fiber reinforcement may be dry or pre-impregnated with a reinforcing polymer. The additional strength of the composite polymer material having fiber reinforcement allows for true, three-dimensional printing of articles having unsupported regions.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventors: Vlastimil Kunc, Craig A. Blue, Chad E. Duty, Randall F. Lind, John M. Lindahl, Peter D. Lloyd, Lonnie J. Love, Matthew R. Love, Brian K. Post, Orlando Rios
  • Publication number: 20170152355
    Abstract: Several examples of an article of manufacture made with an additive manufacturing machine are disclosed. A length of fiber reinforcement is provided to a nozzle. The fiber reinforcement is embedded into a stream of a base polymer material at the nozzle and deposited as a bead of composite polymer material having fiber reinforcement. The fiber reinforcement may be dry or pre-impregnated with a reinforcing polymer. The additional strength of the composite polymer material having fiber reinforcement allows for true, three-dimensional printing of articles having unsupported regions.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventors: Vlastimil Kunc, Craig A. Blue, Chad E. Duty, Randall F. Lind, John M. Lindahl, Peter D. Lloyd, Lonnie J. Love, Matthew R. Love, Brian K. Post, Orlando Rios
  • Patent number: 9347138
    Abstract: A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: May 24, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Craig A. Blue, Frank Wong, Louis F. Aprigliano, Peter G. Engleman, William H. Peter, Tibor G. Rozgonyi, Levent Ozdemir
  • Publication number: 20160107389
    Abstract: An additive manufacturing extrusion head that includes a heated nozzle for accepting a feedstock and extruding the feedstock onto a substrate at a deposition plane, the nozzle having a longitudinal extrusion axis. A reciprocating platen surrounds the nozzle, the platen operable to reciprocate along the extrusion axis at or above the deposition plane as the nozzle extrudes feedstock onto the substrate; and wherein the platen flattens the extruded feedstock such that it does not protrude above the deposition plane as the extrusion head traverses over the substrate.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Randall F. LIND, Craig A. Blue, Lonnie J. Love, Brian K. Post, Peter D. Lloyd
  • Patent number: 9196760
    Abstract: A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: November 24, 2015
    Assignee: UT-BATTELLE, LLC
    Inventors: Chad E. Duty, Charlee J C Bennett, Ji-Won Moon, Tommy J. Phelps, Craig A. Blue, Quanqin Dai, Michael Z. Hu, Ilia N. Ivanov, Gerald E. Jellison, Jr., Lonnie J. Love, Ronald D. Ott, Chad M. Parish, Steven Walker
  • Patent number: 9080229
    Abstract: A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: July 14, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Ryan R. Dehoff, Craig A. Blue, William H. Peter, Wei Chen, Louis F. Aprigliano
  • Patent number: 8809110
    Abstract: Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 19, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Claus Daniel, Craig A. Blue, Ronald D. Ott
  • Publication number: 20140220724
    Abstract: A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.
    Type: Application
    Filed: March 22, 2012
    Publication date: August 7, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Chad E. Duty, Charlee JC Bennett, Ji-Won Moom, Tommy J. Phelps, Craig A. Blue, Quanqin Dai, Michael Z. Hu, Ilia N. Ivanov, Gerald E. Jellison, JR., Lonnie J. Love, Ronald D. Ott, Chad M. Parish, Steven Walker
  • Patent number: 8778459
    Abstract: A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (?1 atomic %), chromium (14 to 18 atomic %), molybdenum (?7 atomic %), tungsten (?1 atomic %), boron (?5 atomic %), or carbon (?4 atomic %).
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: July 15, 2014
    Assignees: Lawrence Livermore National Security, LLC., The Regents of the University of California, Sandia Corporation
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Nancy Yang, Enrique J. Lavernia, Craig A. Blue, Olivia A. Graeve, Robert Bayles, John H. Perepezko, Larry Kaufman, Julie Schoenung, Leo Ajdelsztajn
  • Patent number: 8778724
    Abstract: A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: July 15, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Craig A. Blue, Art Clemens, Chad E. Duty, David C. Harper, Ronald D. Ott, John D. Rivard, Christopher S. Murray, Susan L. Murray, Andre R. Klein
  • Publication number: 20140134451
    Abstract: A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: CRAIG A. BLUE, FRANK WONG, LOUIS F. APRIGLIANO, PETER G. ENGLEMAN, WILLIAM H. PETER, TIBOR G. ROZGONYI, LEVENT OZDEMIR
  • Patent number: 8673455
    Abstract: A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 18, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Craig A. Blue, Frank Wong, Louis F. Aprigliano, Peter G. Engleman, William H. Peter, Tibor G. Rozgonyi, Levent Ozdemir
  • Publication number: 20130294966
    Abstract: A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 0; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: UT-Battelle, LLC
    Inventors: Ryan R. Dehoff, Craig A Blue, William H. Peter, Wei Chen, Louis F. Apriglianoi
  • Patent number: 8524053
    Abstract: A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 3, 2013
    Inventors: Joseph C. Farmer, Frank M. G. Wong, Jeffery J. Haslam, Xiaoyan (Jane) Ji, Sumner D. Day, Craig A. Blue, John D. K. Rivard, Louis F. Aprigliano, Leslie K. Kohler, Robert Bayles, Edward J. Lemieux, Nancy Yang, John H. Perepezko, Larry Kaufman, Arthur Heuer, Enrique J. Lavernia