Patents by Inventor Craig A. Ekvall

Craig A. Ekvall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10321995
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular an orthogonally delivered transcatheter prosthetic valve having a tubular frame with a flow control component mounted within the tubular frame and configured to permit blood flow in a first direction through an inflow end of the valve and block blood flow in a second direction, opposite the first direction, through an outflow end of the valve, wherein the valve is compressible to a compressed configuration for introduction into the body using a delivery catheter for implanting at a desired location in the body, said compressed configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, and expandable to an expanded configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, wherein the long-axis of the compressed configuration of the valve is substantially parallel to a length-wise cylindrical axis of
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: June 18, 2019
    Assignee: VDYNE, LLC
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, David Holtan, Craig Ekvall
  • Publication number: 20180263618
    Abstract: Apparatus and methods are described herein for repositioning a tether attached to a prosthetic heart valve. In some embodiments, a method includes inserting a distal end portion of a snare device through an incision at a first location in a ventricular wall of a heart and within the left ventricle of the heart. A tether extending from a prosthetic mitral valve, through the left ventricle and out an incision at a second location on the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. The snare device is pulled proximally such that the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 20, 2018
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Craig A. EKVALL
  • Patent number: 9986993
    Abstract: Apparatus and methods are described herein for repositioning a tether attached to a prosthetic heart valve. In some embodiments, a method includes inserting a distal end portion of a snare device through an incision at a first location in a ventricular wall of a heart and within the left ventricle of the heart. A tether extending from a prosthetic mitral valve, through the left ventricle and out an incision at a second location on the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. The snare device is pulled proximally such that the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: June 5, 2018
    Assignee: Tendyne Holdings, Inc.
    Inventors: Robert M. Vidlund, Craig A. Ekvall
  • Publication number: 20180028314
    Abstract: Apparatus and methods are described herein for use in the delivery and deployment of a prosthetic mitral valve into a heart. In some embodiments, an apparatus includes a catheter assembly, a valve holding tube and a handle assembly. The valve holding tube is releasably couplable to a proximal end portion of the catheter assembly and to a distal end portion of the handle assembly. The handle assembly includes a housing and a delivery rod. The delivery rod is configured to be actuated to move distally relative to the housing to move a prosthetic heart valve disposed within the valve holding tube out of the valve holding tube and distally within a lumen of the elongate sheath of the catheter assembly. The catheter assembly is configured to be actuated to move proximally relative to the housing such that the prosthetic valve is disposed outside of the lumen of the elongate sheath.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Applicant: Tendyne Holdings, Inc.
    Inventors: Craig A. EKVALL, Khoi LE, John F. OTTE, Zachary J. TEGELS, Robert M. VIDLUND
  • Publication number: 20170312077
    Abstract: Apparatus and methods are described herein for use in the delivery of a prosthetic mitral valve. In some embodiments, an apparatus includes an epicardial pad configured to engage an outside surface of a heart to secure a prosthetic heart valve in position within the heart. The epicardial pad defines a lumen configured to receive therethrough a tether extending from the prosthetic valve. The epicardial pad is movable between a first configuration in which the epicardial pad has a first outer perimeter and is configured to be disposed within a lumen of a delivery sheath and a second configuration in which the epicardial pad has a second outer perimeter greater than the first outer perimeter. The epicardial pad can be disposed against the outside surface of the heart when in the second configuration to secure the prosthetic valve and tether in a desired position within the heart.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 2, 2017
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Igor KOVALSKY, Zachary J. TEGELS, Craig A. EKVALL
  • Publication number: 20170196688
    Abstract: A self-expanding wire frame for a pre-configured compressible transcatheter prosthetic cardiovascular valve, a combined inner frame/outer frame support structure for a prosthetic valve, and methods for deploying such a valve for treatment of a patient in need thereof, are disclosed.
    Type: Application
    Filed: March 29, 2017
    Publication date: July 13, 2017
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark CHRISTIANSON, Chad PERRIN, Zachary TEGELS, Craig EKVALL, Robert VIDLUND
  • Publication number: 20170181854
    Abstract: A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. Alternatively, or additionally, the outer support assembly and the inner valve assembly can be coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark CHRISTIANSON, Chad PERRIN, Zachary TEGELS, Craig EKVALL, Robert VIDLUND, Son MAI, Michael EVANS
  • Publication number: 20170128208
    Abstract: A prosthetic heart valve includes a self-expanding wire frame body, a valve disposed in the body, a leaflet clip coupled to the body, and a control element operably coupled to the leaflet clip. The body has a proximal end and a distal end. The leaflet clip is configured to be transitioned between a first configuration in which the prosthetic valve can be inserted into a heart, and a second configuration in which the leaflet clip is disposed to capture a native valve leaflet between the leaflet clip and the wire frame body when the body is disposed in a native annulus of an atrioventricular valve of a heart. The control element extends from the leaflet clip through a ventricle of the heart and out a wall of the ventricle to allow a user to transition the leaflet clip from its first configuration to its second configuration.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark CHRISTIANSON, Zachary J. TEGELS, Craig A. EKVALL, Robert M. VIDLUND
  • Patent number: 9610159
    Abstract: A self-expanding wire frame for a pre-configured compressible transcatheter prosthetic cardiovascular valve, a combined inner frame/outer frame support structure for a prosthetic valve, and methods for deploying such a valve for treatment of a patient in need thereof, are disclosed.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: April 4, 2017
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Chad Perrin, Zachary Tegels, Craig Ekvall, Robert Vidlund
  • Patent number: 9597181
    Abstract: A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. Alternatively, or additionally, the outer support assembly and the inner valve assembly can be coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 21, 2017
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Chad Perrin, Zachary Tegels, Craig Ekvall, Robert Vidlund, Son Mai, Michael Evans
  • Publication number: 20160367368
    Abstract: Apparatus and methods are described herein for positioning an epicardial anchor device and measuring the load of a tether extending from a prosthetic heart valve and coupled to the epicardial anchor device. In some embodiments, an apparatus includes a handle assembly coupled to an elongate member and a docking member coupled to a distal end of the elongate member. The docking member can be releasably coupled to an epicardial anchor device configured to secure a tether extending from a prosthetic heart valve implanted with a heart at a location on an exterior of a ventricular wall of the heart. A force sensor device is coupled to the handle assembly and can measure a force exerted on the force sensor device. The force is associated with a tension of the tether extending through the elongate member and handle assembly.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Craig A. EKVALL
  • Patent number: 9486306
    Abstract: This invention relates to a pre-configured compressible transcatheter prosthetic cardiovascular valve having an improved anterior leaflet sealing component comprising an inflatable annular sealing device made of a shell of elastomeric material, stabilized tissue or synthetic material, attached to the stent, and wherein during deployment of the valve the shell is filled to form a subvalvular seal. The invention also relates to methods for deploying such a valve for treatment of a patient in need thereof.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: November 8, 2016
    Assignee: Tendyne Holdings, Inc.
    Inventors: Zachary J. Tegels, Craig A. Ekvall, Robert M. Vidlund
  • Publication number: 20160206280
    Abstract: Apparatus and methods are described herein for use in the alignment and deployment of a prosthetic heart valve, such as a mitral valve. In some embodiments, an apparatus includes a tube assembly and a needle assembly configured to be received through a lumen of an outer tube member of the tube assembly. The needle assembly includes an elongate needle having a distal tip configured to be inserted through the epicardial surface of a heart. An imaging probe is coupled to a coupling member and includes an imaging element. The imaging probe is configured to provide image data associated with a location of a commissural-commissural (C-C) plane and a location of the anterior-posterior (A-P) plane of the mitral valve and the annular region of the heart such that a prosthetic mitral valve can be positioned within the heart based at least in part on the C-C plane and the A-P plane.
    Type: Application
    Filed: March 30, 2016
    Publication date: July 21, 2016
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Craig A. EKVALL
  • Publication number: 20160143736
    Abstract: Apparatus and methods are described herein for anchoring a prosthetic heart valve. In some embodiments, an apparatus includes a tether attachment member that includes a base member that defines at least a portion of a tether passageway through which a portion of a tether extending from a prosthetic heart valve can be received therethrough. The base member defines a locking pin channel that intersects the tether passageway. A locking pin is disposable within the locking pin channel and movable between a first position in which the locking pin is at a spaced distance from the tether passageway, and a second position in which the locking pin intersects the tether passageway and can engage the portion of a tether disposed therein to secure the tether to the tether attachment member.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 26, 2016
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Mark CHRISTIANSON, Craig EKVALL
  • Publication number: 20160106537
    Abstract: A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. Alternatively, or additionally, the outer support assembly and the inner valve assembly can be coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Applicant: Tendyne Holdings, Inc
    Inventors: Mark CHRISTIANSON, Chad PERRIN, Zachary TEGELS, Craig EKVALL, Robert VIDLUND, Son MAI, Michael EVANS
  • Publication number: 20160074160
    Abstract: A self-expanding wire frame for a pre-configured compressible transcatheter prosthetic cardiovascular valve, a combined inner frame/outer frame support structure for a prosthetic valve, and methods for deploying such a valve for treatment of a patient in need thereof, are disclosed.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark CHRISTIANSON, Chad PERRIN, Zachary TEGELS, Craig EKVALL, Robert VIDLUND
  • Publication number: 20160008131
    Abstract: A prosthetic heart valve includes a self-expanding wire frame body, a valve disposed in the body, a leaflet clip coupled to the body, and a control element operably coupled to the leaflet clip. The body has a proximal end and a distal end. The leaflet clip is configured to be transitioned between a first configuration in which the prosthetic valve can be inserted into a heart, and a second configuration in which the leaflet clip is disposed to capture a native valve leaflet between the leaflet clip and the wire frame body when the body is disposed in a native annulus of an atrioventricular valve of a heart. The control element extends from the leaflet clip through a ventricle of the heart and out a wall of the ventricle to allow a user to transition the leaflet clip from its first configuration to its second configuration.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Applicant: TENDYNE HOLDINGS, INC.
    Inventors: Mark CHRISTIANSON, Zachary J. TEGELS, Craig A. EKVALL, Robert M. VIDLUND
  • Publication number: 20150223934
    Abstract: Apparatus and methods are described herein for repositioning a tether attached to a prosthetic heart valve. In some embodiments, a method includes inserting a distal end portion of a snare device through an incision at a first location in a ventricular wall of a heart and within the left ventricle of the heart. A tether extending from a prosthetic mitral valve, through the left ventricle and out an incision at a second location on the ventricular wall of the heart is snared with the snare device. The tether is pulled with the snare device such that a proximal end of the tether is moved back through the incision at the second location on the ventricular wall and into the left ventricle. The snare device is pulled proximally such that the tether is pulled proximally through the incision at the first location in the ventricular wall of the heart.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 13, 2015
    Applicant: TENDYNE HOLDINGS, INC.
    Inventors: Robert M. VIDLUND, Craig A. EKVALL
  • Publication number: 20150005874
    Abstract: This invention relates to a self-expanding pre-configured compressible transcatheter prosthetic cardiovascular valve that comprises atrial thrombogenic sealing pocket cover mounted on a self-expanding inner wire frame having a leaflet structure comprised of articulating leaflets that define a valve function, said inner wire frame is disposed within a self-expanding annular tissue-covered outer wire frame, said outer wire frame having an articulating collar, forming a multi-component prosthetic valve assembly for anchoring within the mitral valve or triscuspid valve of the heart, and methods for deploying such a valve for treatment of a patient in need thereof.
    Type: Application
    Filed: April 24, 2014
    Publication date: January 1, 2015
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Zachary J. Tegels, Craig A. Ekvall
  • Publication number: 20140379076
    Abstract: This invention relates to a self-expanding pre-configured compressible transcatheter prosthetic cardiovascular valve that comprises an atrial halo fluid sealing device mounted on a self-expanding inner wire frame having a leaflet structure comprised of articulating leaflets that define a valve function, said inner wire frame is disposed within a self-expanding annular tissue-covered outer wire frame, said outer wire frame having an articulating collar, forming a multi-component prosthetic valve assembly for anchoring within the mitral valve or triscuspid valve of the heart, and methods for deploying such a valve for treatment of a patient in need thereof
    Type: Application
    Filed: January 15, 2014
    Publication date: December 25, 2014
    Applicant: Tendyne Holdings, Inc.
    Inventors: Robert M. VIDLUND, Zachary J. TEGELS, Craig A. EKVALL