Patents by Inventor Craig A. Kelly
Craig A. Kelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7927277Abstract: The time between heartbeats is measured over a series of such heartbeats. The time interval between two successive events is calculated and stored as a first array. The time difference between adjacent heartbeat intervals is also calculated from the first array and recorded as a differential array. The differential array is subjected to frequency analysis. First the differential array data is linearly interpolated to increase the number of data samples. The interpolated data is then subjected to a fast fourier transform (FFT) yielding a power spectrum. Characteristic frequency ranges are then integrated and the resulting frequency domain spectrum(s) are analyzed for dominant frequency characteristics.Type: GrantFiled: August 23, 2010Date of Patent: April 19, 2011Assignee: The Johns Hopkins UniversityInventor: Craig A. Kelly
-
Publication number: 20100317979Abstract: The time between heartbeats is measured over a series of such heartbeats. The time interval between two successive events is calculated and stored as a first array. The time difference between adjacent heartbeat intervals is also calculated from the first array and recorded as a differential array. The differential array is subjected to frequency analysis. First the differential array data is linearly interpolated to increase the number of data samples. The interpolated data is then subjected to a fast fourier transform (FFT) yielding a power spectrum. Characteristic frequency ranges are then integrated and the resulting frequency domain spectrum(s) are analyzed for dominant frequency characteristics.Type: ApplicationFiled: August 23, 2010Publication date: December 16, 2010Inventor: Craig A. Kelly
-
Patent number: 7780596Abstract: The time between heartbeats is measured over a series of such heartbeats. The time interval between two successive events is calculated and stored as a first array. The time difference between adjacent heartbeat intervals is also calculated from the first array and recorded as a differential array. The differential array is subjected to frequency analysis. First the differential array data is linearly interpolated to increase the number of data samples. The interpolated data is then subjected to a fast fourier transform (FFT) yielding a power spectrum. Characteristic frequency ranges are then integrated and the resulting frequency domain spectrum(s) are analyzed for dominant frequency characteristics.Type: GrantFiled: October 16, 2003Date of Patent: August 24, 2010Assignee: The Johns Hopkins UniversityInventor: Craig A. Kelly
-
Patent number: 6924147Abstract: A polymeric food spoilage sensor comprises a polymer containing a polyazamacrocyclic transition metal complex. The complex selectively binds biogenic amines, such as cadaverine, putrescine and histamine, which are released by food spoilage microorganisms. The polymer undergoes a detectable color change upon exposure to biogenic amine, thus indicating that food spoilage has probably occurred. In one embodiment, the polymer is molecularly imprinted with the biogenic amine to impart selective binding affinity. The polymer is easily incorporated in common food containers and can be employed in fiber optic detection devices.Type: GrantFiled: July 15, 2003Date of Patent: August 2, 2005Assignee: The Johns Hopkins UniversityInventors: Craig A. Kelly, George M. Murray, O. Manuel Uy
-
Patent number: 6852891Abstract: A method of inhibiting or preventing the use of anhydrous ammonia as a solvent in a dissolving metal reduction process comprises adding to anhydrous ammonia a chemical reagent which is capable of scavenging solvated electrons generated when alkali or alkaline earth metal is dissolved in the anhydrous ammonia, the chemical reagent being added to the anhydrous ammonia such that when alkali metal is dissolved in the anhydrous ammonia containing the chemical reagent and thereafter ephedrine, pseudoephedrine or combination thereof is introduced to the anhydrous ammonia to produce a reaction product, the methamphetamine yield in the reaction product is below 50%, preferably below 10%, and more preferably below 1%. Preferred chemical reagents include Fe(III)citrate, ferrocene, 2-chloro-6-(trichloromethyl)pyridine and 1,1,1,2-tetrafluoroethane.Type: GrantFiled: June 21, 2001Date of Patent: February 8, 2005Assignee: The Johns Hopkins UniversityInventors: George M. Murray, Craig A. Kelly, O. Manuel Uy, Lawrence W. Hunter, David S. Lawrence
-
Publication number: 20040087865Abstract: The time between heartbeats is measured over a series of such heartbeats. The time interval between two successive events is calculated and stored as a first array. The time difference between adjacent heartbeat intervals is also calculated from the first array and recorded as a differential array. The differential array is subjected to frequency analysis. First the differential array data is linearly interpolated to increase the number of data samples. The interpolated data is then subjected to a fast fourier transform (FFT) yielding a power spectrum. Characteristic frequency ranges are then integrated and the resulting frequency domain spectrum(s) are analyzed for dominant frequency characteristics.Type: ApplicationFiled: October 16, 2003Publication date: May 6, 2004Inventor: Craig A. Kelly
-
Publication number: 20040049079Abstract: A method of inhibiting or preventing the use of anhydrous ammonia as a solvent in a dissolving metal reduction process comprises adding to anhydrous ammonia a chemical reagent which is capable of scavenging solvated electrons generated when alkali or alkaline earth metal is dissolved in the anhydrous ammonia, the chemical reagent being added to the anhydrous ammonia such that when alkali metal is dissolved in the anhydrous ammonia containing the chemical reagent and thereafter ephedrine, pseudoephedrine or combination thereof is introduced to the anhydrous ammonia to produce a reaction product, the methamphetamine yield in the reaction product is below 50%, preferably below 10%. and more preferably below 1%. Preferred chemical reagents include Fe(III)citrate, ferrocene, 2-chloro-6-(trichloromethyl)pyridine and 1,1,1,2-tetrafluoroethane.Type: ApplicationFiled: December 9, 2002Publication date: March 11, 2004Inventors: George M. Murray, Craig A. Kelly, O. Manuel Uy, Lawrence W. Hunter, David S. Lawrence
-
Publication number: 20040014235Abstract: A polymeric food spoilage sensor comprises a polymer containing a polyazamacrocyclic transition metal complex. The complex selectively binds biogenic amines, such as cadaverine, putrescine and histamine, which are released by food spoilage microorganisms. The polymer undergoes a detectable color change upon exposure to biogenic amine, thus indicating that food spoilage has probably occurred. In one embodiment, the polymer is molecularly imprinted with the biogenic amine to impart selective binding affinity. The polymer is easily incorporated in common food containers and can be employed in fiber optic detection devices.Type: ApplicationFiled: July 15, 2003Publication date: January 22, 2004Inventors: Craig A. Kelly, George M. Murray, O. Manuel Uy
-
Patent number: 6593142Abstract: A polymeric food spoilage sensor comprises a polymer containing a polyazamacrocyclic transition metal complex. The complex selectively binds biogenic amines, such as cadaverine, putrescine and histamine, which are released by food spoilage microorganisms. The polymer undergoes a detectable color change upon exposure to biogenic amine, thus indicating that food spoilage has probably occurred. In one embodiment, the polymer is molecularly imprinted with the biogenic amine to impart selective binding affinity. The polymer is easily incorporated in common food containers and can be employed in fiber optic detection devices.Type: GrantFiled: October 26, 2001Date of Patent: July 15, 2003Assignee: The Johns Hopkins UniversityInventors: Craig A. Kelly, George M. Murray, O. Manuel Uy
-
Publication number: 20030100118Abstract: A polymeric food spoilage sensor comprises a polymer containing a polyazamacrocyclic transition metal complex. The complex selectively binds biogenic amines, such as cadaverine, putrescine and histamine, which are released by food spoilage microorganisms. The polymer undergoes a detectable color change upon exposure to biogenic amine, thus indicating that food spoilage has probably occurred. In one embodiment, the polymer is molecularly imprinted with the biogenic amine to impart selective binding affinity. The polymer is easily incorporated in common food containers and can be employed in fiber optic detection devices.Type: ApplicationFiled: October 26, 2001Publication date: May 29, 2003Inventors: Craig A. Kelly, George M. Murray, O. Manuel Uy