Patents by Inventor Craig B. McAnally

Craig B. McAnally has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8364426
    Abstract: A flow device is provided. The flow device includes at least one conduit (20) and a pick-off (30) providing a pick-off signal (35) for measuring motion of the at least one conduit (20). The flow device also includes a drive (40) that receives a first signal (55) for vibrating the at least one conduit (20) at a resonance frequency and that receives a second signal (56) for vibrating the at least one conduit at a frequency that is different than the resonance frequency. One or more electronics (50) is provided. The one or more electronics (50) generates the first and second signals (55, 56), receives the pick-off signal (35) from the pick-off (30), and measures changes in a time shift between the second signal (56) frequency applied by the drive (40) and the second signal (56) frequency detected by the pick-off (30).
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: January 29, 2013
    Assignee: Micro Motion, Inc.
    Inventors: Craig B. McAnally, Richard L. Maginnis, Paul J. Hays
  • Patent number: 8302489
    Abstract: A vibratory flow meter (5) for measuring flow characteristics of a three phase flow is provided according to the invention. The vibratory flow meter (5) includes a meter assembly (10) including pickoff sensors (105, 105?) and meter electronics (20) coupled to the pickoff sensors (105, 105?). The meter electronics (20) is configured to receive a vibrational response from the pickoff sensors (105, 105), generate a first density measurement of the three phase flow using a first frequency component of the vibrational response, and generate at least a second density measurement of the three phase flow using at least a second frequency component of the vibrational response. The at least second frequency component is a different frequency than the first frequency component. The meter electronics (20) is further configured to determine one or more flow characteristics from the first density measurement and the at least second density measurement.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: November 6, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Craig B McAnally, Richard L St. Pierre, Jr., Andrew Timothy Patten
  • Patent number: 8260562
    Abstract: A meter electronics (20) for generating a drive signal for a vibratory flowmeter (5) is provided according to an embodiment of the invention. The meter electronics includes an interface (201) and a processing system (203). The processing system is configured to receive the sensor signal (201) through the interface, phase-shift the sensor signal (210) substantially 90 degrees to create a phase-shifted sensor signal, determine a phase shift value from a frequency response of the vibratory flowmeter, and combine the phase shift value with the sensor signal (201) and the phase-shifted sensor signal in order to generate a drive signal phase (213). The processing system is further configured to determine a sensor signal amplitude (214) from the sensor signal (210) and the phase-shifted sensor signal, and generate a drive signal amplitude (215) based on the sensor signal amplitude (214), wherein the drive signal phase (213) is substantially identical to a sensor signal phase (212).
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: September 4, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J Cunningham, William M Mansfield, Craig B McAnally
  • Patent number: 8239157
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 7, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Craig B McAnally, Andrew T Patten, Charles P Stack, Jeffrey S Walker, Neal B Gronlie
  • Patent number: 8165830
    Abstract: Meter electronics (20) for processing sensor signals in a flow meter is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a first sensor signal and a second sensor signal and a processing system (203) in communication with the interface (201) and configured to receive the first sensor signal and the second sensor signal, generate a ninety degree phase shift from the first sensor signal, and compute a frequency from the first sensor signal and the ninety degree phase shift. The processing system (203) is further configured to generate sine and cosine signals using the frequency, and quadrature demodulate the first sensor signal and the second sensor signal using the sine and cosine signals in order to determine the phase difference.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: April 24, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Craig B McAnally, Denis M Henrot
  • Patent number: 8135552
    Abstract: A method for detecting a cable fault in a cabling of a flow meter is provided according to an embodiment of the invention. The method includes testing one or more first pickoff wires and one or more second pickoff wires of the cabling for pickoff open wire faults. The method further includes testing the first pickoff wires and the second pickoff wires for pickoff connection orientation faults if no pickoff open wire faults are determined in the first pickoff wires and the second pickoff wires. The method further includes testing one or more driver wires of the cabling for driver open wire faults. The method further includes testing the driver wires for a driver connection orientation fault if no driver open wire faults are determined in the driver wires.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 13, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Paul J Hays, Craig B McAnally
  • Patent number: 7996160
    Abstract: Meter electronics (20) for determining a void fraction of gas in a flow material flowing through a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a frequency response of the flow material and a processing system (203) in communication with the interface (201). The processing system (203) is configured to receive the frequency response from the interface (201), break out the frequency response into at least a gas frequency component and a fluid frequency component, and determine the void fraction of gas from the frequency response and one or more of the gas frequency component and the fluid frequency component.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 9, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Craig B. McAnally, Mark James Bell
  • Publication number: 20110185822
    Abstract: A method for detecting a cable fault in a cabling of a flow meter is provided according to an embodiment of the invention. The method includes testing one or more first pickoff wires and one or more second pickoff wires of the cabling for pickoff open wire faults. The method further includes testing the first pickoff wires and the second pickoff wires for pickoff connection orientation faults if no pickoff open wire faults are determined in the first pickoff wires and the second pickoff wires. The method further includes testing one or more driver wires of the cabling for driver open wire faults. The method further includes testing the driver wires for a driver connection orientation fault if no driver open wire faults are determined in the driver wires.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Applicant: Micro Motion, Inc.
    Inventors: Paul J. HAYS, Craig B. McAnally
  • Patent number: 7983855
    Abstract: A meter electronics (20) for generating a drive signal for a vibratory flowmeter (5) is provided according to an embodiment of the invention. The meter electronics includes an interface (201) and a processing system (203). The processing system is configured to receive the sensor signal (201) through the interface, phase-shift the sensor signal (210) substantially 90 degrees to create a phase-shifted sensor signal, determine a phase shift value from a frequency response of the vibratory flowmeter, and combine the phase shift value with the sensor signal (201) and the phase-shifted sensor signal in order to generate a drive signal phase (213). The processing system is further configured to determine a sensor signal amplitude (214) from the sensor signal (210) and the phase-shifted sensor signal, and generate a drive signal amplitude (215) based on the sensor signal amplitude (214), wherein the drive signal phase (213) is substantially identical to a sensor signal phase (212).
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: July 19, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, William M Mansfield, Craig B McAnally
  • Publication number: 20110166801
    Abstract: A meter electronics (20) for generating a drive signal for a vibratory flowmeter (5) is provided according to an embodiment of the invention. The meter electronics includes an interface (201) and a processing system (203). The processing system is configured to receive the sensor signal (201) through the interface, phase-shift the sensor signal (210) substantially 90 degrees to create a phase-shifted sensor signal, determine a phase shift value from a frequency response of the vibratory flowmeter, and combine the phase shift value with the sensor signal (201) and the phase-shifted sensor signal in order to generate a drive signal phase (213). The processing system is further configured to determine a sensor signal amplitude (214) from the sensor signal (210) and the phase-shifted sensor signal, and generate a drive signal amplitude (215) based on the sensor signal amplitude (214), wherein the drive signal phase (213) is substantially identical to a sensor signal phase (212).
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. CUNNINGHAM, William M. Mansfield, Craig B. McAnally
  • Publication number: 20110144938
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 16, 2011
    Applicant: Micro Motion, Inc.
    Inventors: Craig B. MCANALLY, Andrew T. Patten, Charles P. Stack, Jeffrey S. Walker, Neal B. Gronlie
  • Publication number: 20110138205
    Abstract: A method for optimizing processor operation in a processing system including one or more digital filters is provided according to the invention. The method includes generating initial filter coefficients for the one or more digital filters of the processing system, determining one or more initial filter coefficients for at least one digital filter of the one or more digital filters that can be dropped and dropping the one or more initial filter coefficients. Dropping the one or more initial filter coefficients reduces a total number of filter coefficients to be used by the processing system.
    Type: Application
    Filed: July 30, 2008
    Publication date: June 9, 2011
    Applicant: Micro Motion, Inc.
    Inventors: Craig B McAnally, Paul J. Hays
  • Patent number: 7953568
    Abstract: A method for detecting a cable fault in a cabling of a flow meter is provided according to an embodiment of the invention. The method includes testing one or more first pickoff wires and one or more second pickoff wires of the cabling for pickoff open wire faults. The method further includes testing the first pickoff wires and the second pickoff wires for pickoff connection orientation faults if no pickoff open wire faults are determined in the first pickoff wires and the second pickoff wires. The method further includes testing one or more driver wires of the cabling for driver open wire faults. The method further includes testing the driver wires for a driver connection orientation fault if no driver open wire faults are determined in the driver wires.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: May 31, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Paul J. Hays, Craig B. McAnally
  • Publication number: 20110121794
    Abstract: A bus instrument (10) configured to predictively limit power consumption and adapted for use with a two-wire instrumentation bus is provided. The bus instrument (10) includes a sensor (13), a shunt regulator (14), and a controller (20). The controller (20) is configured to generate a predicted available power Ppredicted that will be available to the bus instrument (10) after a change in the loop current IL, compare the predicted available power Ppredicted to a present time power Pt0 comprising a controller power Pcontroller plus a sensor power Psensor, and reduce the sensor power Psensor if the total available power Pavailable is less than the controller power Pcontroller plus the sensor power Psensor.
    Type: Application
    Filed: July 31, 2008
    Publication date: May 26, 2011
    Applicant: Micro Motionm Inc.
    Inventors: William M Mansfield, Craig B McAnally, Paul J Hays
  • Publication number: 20110113173
    Abstract: A method for executing a processing routine that utilizes an external memory is provided. The processing routine requires more than one external memory access. The method comprises the step of distributing the external memory access after a predetermined number of external memory accesses.
    Type: Application
    Filed: July 23, 2008
    Publication date: May 12, 2011
    Inventors: Paul J. Hays, Craig B. McAnally, William M. Mansfield
  • Publication number: 20110098945
    Abstract: The present invention relates to a system, method, and computer program product for generating a drive signal for a vibrating measuring device (5). A drive chain (C1, C2, C3, CN) is selected from at least two drive chains (C1, C2, C3, CN). Each drive chain (C1, C2, C3, CN) modifies at least one pick-off signal to generate the drive signal. Each drive chain (C1, C2, C3, CN) generates a different mode of vibration in the at least one conduit (103A). The drive signal generated by the selected drive chain (C1, C2, C3, CN) is provided to a drive (104) of the vibrating measuring device (5).
    Type: Application
    Filed: July 1, 2008
    Publication date: April 28, 2011
    Inventor: Craig B McAnally
  • Patent number: 7925456
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: April 12, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Craig B. McAnally, Andrew T. Patten, Charles P. Stack, Jeffrey S. Walker, Neal B. Gronlie
  • Patent number: 7908097
    Abstract: Meter electronics (20) and methods for detecting a flow anomaly in a flow material flowing through a flow meter (5) are provided. The meter electronics (20) includes an interface (201) for receiving a vibrational response of the flow material, with the vibrational response including at least a first sensor signal and a second sensor signal, and a processing system (203) in communication with the interface (201). The processing system (203) is configured to receive the vibrational response from the interface (201), generate a ninety degree phase shift from the first sensor signal and generate at least one flow characteristic using at least the first sensor signal and the ninety degree phase shift, compare the at least one flow characteristic to at least one anomaly profile, detect a shift in the vibrational response if the at least one flow characteristic falls within the anomaly profile, and indicate an anomaly condition as a result of the detecting.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: March 15, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Graeme Ralph Duffill, Mark James Bell, Craig B. McAnally, Richard L. Maginnis
  • Patent number: 7845242
    Abstract: A three pickoff sensor flow meter (200) is provided according to the invention. The three pickoff sensor flow meter (200) includes a first flow conduit (210a) conducting a first flow stream, a second flow conduit (210b) that is independent of the first flow stream, and a common driver (216) configured to vibrate the first flow conduit (210a) and the second flow conduit (210b). The three pickoff sensor flow meter (200) further includes three pickoff sensors (218, 219a, 219b) configured to provide first and second time delay values (?t1) and (?t2) for the first flow conduit (210a) and the second flow conduit (210b).
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: December 7, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Craig B McAnally, Mark James Bell, Gregory Treat Lanham
  • Publication number: 20100275703
    Abstract: The present invention relates to flow devices that measure a characteristic of a flowing substance and methods for operating flow devices. In one embodiment, a drive (40) is provided that receives a first signal (55) for vibrating at least one conduit (20) at a resonance frequency and a second signal (56) for vibrating the at least one conduit (20) at a frequency that is different than the resonance frequency. In another embodiment, a drive (140) is provided that alternates between receiving a drive signal (155) to vibrate at least one conduit (120) at a resonance frequency and providing a pick-off signal (145) for measuring motion of the at least one conduit (120). In another embodiment, one or more electronics (50, 150) are provided that determine a mode of vibration of at least one conduit (20, 120) and compare the determined mode of vibration to one or more reference modes of vibration to determine whether a substance is flowing within the at least one conduit (20, 120).
    Type: Application
    Filed: October 8, 2007
    Publication date: November 4, 2010
    Applicant: Micro Motion, Inc.
    Inventors: Craig B McAnally, Richard L. Maginnis, Paul J. Hays