Patents by Inventor Craig C. Mello

Craig C. Mello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7893036
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: February 22, 2011
    Assignee: University of Massachusetts
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyoergy Hutvagner, Alla Grishok, Craig C. Mello
  • Publication number: 20100234448
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 16, 2010
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. ZAMORE, Juanita MCLACHLAN, Gyorgy HUTVAGNER, Alla GRISHOK, Craig C. MELLO
  • Publication number: 20100233810
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 16, 2010
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. ZAMORE, Juanita MCLACHLAN, Gyorgy HUTVAGNER, Alla GRISHOK, Craig C. MELLO
  • Patent number: 7759463
    Abstract: Genes involved in double-stranded RNA interference (RNAi pathway genes) are identified and used to investigate the RNAi pathway. The genes and their products are also useful for modulating RNAi pathway activity.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 20, 2010
    Assignee: University of Massachusetts
    Inventors: Craig C. Mello, Hiroaki Tabara, Andrew Fire, Alla Grishok
  • Patent number: 7691995
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: April 6, 2010
    Assignee: University of Massachusetts
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 7622633
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 24, 2009
    Assignee: Carnegie Institution of Washington
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Patent number: 7560438
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: July 14, 2009
    Assignees: The Carnegie Institution of Washington, The University of Massachusetts
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Patent number: 7538095
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: May 26, 2009
    Assignees: The Carnegie Institution of Washington, The University of Massachusetts
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Publication number: 20080305543
    Abstract: Genes involved in double-stranded RNA interference (RNAi pathway genes) are identified and used to investigate the RNAi pathway. The genes and their products are also useful for modulating RNAi pathway activity.
    Type: Application
    Filed: February 22, 2007
    Publication date: December 11, 2008
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Craig C. Mello, Andrew Fire, Hiroaki Tabara, Alla Grishok
  • Publication number: 20080248576
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Application
    Filed: September 28, 2007
    Publication date: October 9, 2008
    Applicants: Carnegie Institution of Washington, the, University of Massachusetts, the
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Publication number: 20080200420
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: March 26, 2008
    Publication date: August 21, 2008
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 7282564
    Abstract: Genes involved in double-stranded RNA interference (RNAi pathway genes) are identified and used to investigate the RNAi pathway. The genes and their products are also useful for modulating RNAi pathway activity.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: October 16, 2007
    Assignees: University of Massachusetts, Carnegie Institute of Washington
    Inventors: Craig C. Mello, Andrew Fire, Hiroaki Tabara, Alla Grishok
  • Publication number: 20040265839
    Abstract: Genes involved in double-stranded RNA interference (RNAi pathway genes) are identified and used to investigate the RNAi pathway. The genes and their products are also useful for modulating RNAi pathway activity.
    Type: Application
    Filed: August 20, 2003
    Publication date: December 30, 2004
    Applicant: UNIVERSITY OF MASSACHUSETTS MEDICAL
    Inventors: Craig C. Mello, Andrew Fire, Hiroaki Tabara, Alla Grishok
  • Publication number: 20030114409
    Abstract: The present invention features compositions and methods to induce or enhance RNAi in cells, systems, and organisms using molecules that mediate RNAi in invertebrates such as C. elegans.
    Type: Application
    Filed: November 15, 2002
    Publication date: June 19, 2003
    Inventors: Craig C. Mello, Chun-Chieh Chen, Darryl Conte
  • Publication number: 20030056235
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 20, 2003
    Applicant: THE CARNEGIE INSTITUTION OF WASHINGTON
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Publication number: 20030055020
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 20, 2003
    Applicant: The Carnegie Institution of Washington
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Publication number: 20030051263
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 13, 2003
    Applicant: The Carnegie Institution of Washington
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello
  • Patent number: 6506559
    Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: January 14, 2003
    Assignee: Carnegie Institute of Washington
    Inventors: Andrew Fire, Stephen Kostas, Mary Montgomery, Lisa Timmons, SiQun Xu, Hiroaki Tabara, Samuel E. Driver, Craig C. Mello