Patents by Inventor Craig E. Evans

Craig E. Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170040630
    Abstract: A redox flow battery system is provided. The system includes a positive electrode in fluid communication with a positive electrolyte comprising a first metal ion and a negative electrode in fluid communication with a negative electrolyte comprising a second metal ion. An electrically insulating ion conducting surface is provided separating the positive electrode from the negative electrode. Further, the system includes a catalyst surface in fluid communication with the first metal ion, the second metal ion, or a combination thereof, and hydrogen gas, wherein the hydrogen gas and the first metal ion, the second metal ion, or a combination thereof are fluidly contacted at the catalyst surface.
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Inventors: Yang Song, Craig E. Evans
  • Patent number: 9509011
    Abstract: A method of rebalancing electrolytes in a redox flow battery system comprises directing hydrogen gas generated on the negative side of the redox flow battery system to a catalyst surface, and fluidly contacting the hydrogen gas with an electrolyte comprising a metal ion at the catalyst surface, wherein the metal ion is chemically reduced by the hydrogen gas at the catalyst surface, and a state of charge of the electrolyte and pH of the electrolyte remain substantially balanced.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: November 29, 2016
    Assignee: ESS Tech, Inc.
    Inventors: Craig E. Evans, Yang Song
  • Publication number: 20160293992
    Abstract: A method of rebalancing electrolytes in a redox flow battery system comprises directing hydrogen gas generated on the negative side of the redox flow battery system to a catalyst surface, and fluidly contacting the hydrogen gas with an electrolyte comprising a metal ion at the catalyst surface, wherein the metal ion is chemically reduced by the hydrogen gas at the catalyst surface, and a state of charge of the electrolyte and pH of the electrolyte remain substantially balanced.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Yang Song, Craig E. Evans
  • Publication number: 20160190604
    Abstract: An electrode for use in an all-iron redox flow battery is provided. In one example, the electrode may include a plastic mesh; and a coating on the plastic mesh. The coating may be a hydrophilic coating or a conductive coating and the electrode may have an electrode reaction potential is less than 0.8V. Further, a method of manufacturing a coated plastic mesh electrode for use in an all-iron redox flow battery is provided. In one example method, the steps include fabricating a plastic mesh, treating the plastic mesh by applying a solvent treatment or a plasma treatment or a mechanical abrasion treatment; coating the plastic mesh with a material selected from: carbon inks, metal oxides, and hydrophilic polymers.
    Type: Application
    Filed: December 30, 2015
    Publication date: June 30, 2016
    Inventors: Craig E. Evans, Yang Song, Jeffrey Chen
  • Publication number: 20150255824
    Abstract: Methods and systems are provided which maintain the positive and negative electrolyte pH and stability of a redox flow battery through the use of electrochemical rebalancing cells. The electrochemical cells may be activated by applying an electrical load to affect changes to the pH of the electrolytes. The use of the electrochemical cells improves long term performance stability redox flow batteries by decreasing and/or eliminating Fe(OH)3 precipitation formation.
    Type: Application
    Filed: December 31, 2014
    Publication date: September 10, 2015
    Inventors: Craig E. Evans, Yang Song
  • Publication number: 20140363747
    Abstract: A method of rebalancing electrolytes in a redox flow battery system comprises directing hydrogen gas generated on the negative side of the redox flow battery system to a catalyst surface, and fluidly contacting the hydrogen gas with an electrolyte comprising a metal ion at the catalyst surface, wherein the metal ion is chemically reduced by the hydrogen gas at the catalyst surface, and a state of charge of the electrolyte and pH of the electrolyte remain substantially balanced.
    Type: Application
    Filed: March 6, 2014
    Publication date: December 11, 2014
    Applicant: ENERGY STORAGE SYSTEMS, INC.
    Inventors: Craig E. Evans, Yang Song
  • Publication number: 20140272493
    Abstract: An iron redox flow battery system, comprising a redox electrode, a plating electrolyte tank, a plating electrode, a redox electrolyte tank with additional acid additives that may be introduced into the electrolytes in response to electrolyte pH. The acid additives may act to suppress undesired chemical reactions that create losses within the battery and may be added in response to sensor indications of these reactions.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Energy Storage Systems, Inc.
    Inventors: Craig E. Evans, Yang Song
  • Patent number: 8232016
    Abstract: To mitigate bubble blockage in water passageways (78, 85), in or near reactant gas flow field plates (74, 81) of fuel cells (38), passageways are configured with (a) intersecting polygons, obtuse angles including triangles, trapezoids, or (b) hydrophobic surfaces (111), or (c) differing adjacent channels (127, 128), or (d) water permeable layers (93, 115, 116, 119) adjacent to water channels or hydrophobic/hydrophilic layers (114, 120).
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 31, 2012
    Assignee: UTC Power Corporation
    Inventors: Robert M. Darling, Evan C. Rege, Ryan J. Balliet, Jeremy P. Meyers, Craig E. Evans, Thomas D. Jarvi
  • Patent number: 8221692
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 17, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Patent number: 8168339
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: May 1, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Publication number: 20120076697
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Publication number: 20120034535
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 9, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Patent number: 8084161
    Abstract: A fuel cell power plant assembly includes an accumulator having a housing. In one example, at least one demineralizer portion is positioned to interact with fluid within the accumulator housing. This allows for warm fluid within the accumulator housing to provide heat to the demineralizer portion. In one example, the demineralizer portion is within the housing. Another example includes a separator supported within the housing of the accumulator. A disclosed example includes a conical shaped baffle as the separator. The separator separates liquid from gas and facilitates distributing fluid flow within the accumulator housing to provide increased heat exchange with the demineralizer portion within the housing.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: December 27, 2011
    Assignee: UTC Power Corporation
    Inventors: Garrett W. Fink, Jennifer M. Kurtz, Praveen Narasimhamurthy, Craig E. Evans
  • Patent number: 8071247
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: December 6, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Patent number: 8048581
    Abstract: A polymer electrolyte membrane (PEM) fuel cell power plant is cooled evaporatively with a water coolant system which does not permit liquid water to exit or flow through the coolant system. The coolant system utilizes a hydrophobic porous member (28) for venting gases such as fuel and/or air from a coolant water flow field in the system. Coolant water (36) is prevented from continuosly contacting the porous member during operation of the power plant thus preventing blockage of the porous member by coolant water or contaminants disposed in the coolant water.
    Type: Grant
    Filed: December 16, 2006
    Date of Patent: November 1, 2011
    Assignee: VTC Power Corporation
    Inventors: Robert Darling, Craig E. Evans
  • Patent number: 8043750
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 25, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Patent number: 8038968
    Abstract: Embodiments are disclosed that relate to increasing a temperature in a low temperature zone in a steam reforming reactor via a radiative heating shunt. For example, one disclosed embodiment provides a steam reforming reactor comprising a reaction chamber having an interior surface, a packing material located within the reaction chamber, and a radiative heating shunt extending from the interior surface into the reaction chamber. The radiative heating shunt comprises a porous partition enclosing a sub-volume of the reaction chamber bounded by the porous partition and a portion of the interior surface, the sub-volume being at least partly free of packing material such that radiative heat has a path from the interior surface to a distal portion of the porous partition that is unobstructed by packing material.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 18, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Publication number: 20110206570
    Abstract: Embodiments are disclosed that relate to increasing a temperature in a low temperature zone in a steam reforming reactor via a radiative heating shunt. For example, one disclosed embodiment provides a steam reforming reactor comprising a reaction chamber having an interior surface, a packing material located within the reaction chamber, and a radiative heating shunt extending from the interior surface into the reaction chamber. The radiative heating shunt comprises a porous partition enclosing a sub-volume of the reaction chamber bounded by the porous partition and a portion of the interior surface, the sub-volume being at least partly free of packing material such that radiative heat has a path from the interior surface to a distal portion of the porous partition that is unobstructed by packing material.
    Type: Application
    Filed: October 28, 2010
    Publication date: August 25, 2011
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Patent number: 7972740
    Abstract: To mitigate bubble blockage in water passageways (78, 85), in or near reactant gas flow field plates (74, 81) of fuel cells (38), passageways are configured with (a) cross sections having intersecting polygons or other shapes, obtuse angles including triangles and trapezoids, or (b) hydrophobic surfaces (111), or (c) differing adjacent channels (127, 128), or (d) water permeable layers (93, 115, 116, 119) adjacent to water channels or hydrophobic/hydrophilic layers (114, 120), or (e) diverging channels (152).
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 5, 2011
    Assignee: UTC Power Corporation
    Inventors: Robert M. Darling, Evan C. Rege, Ryan J. Balliet, Jeremy P. Meyers, Craig E. Evans, Thomas D. Jarvi, Sitaram Ramaswamy
  • Publication number: 20110143237
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Application
    Filed: October 28, 2010
    Publication date: June 16, 2011
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen