Patents by Inventor Craig E. Hampel

Craig E. Hampel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210064788
    Abstract: Methods and systems for enabling secure memory transactions in a memory controller are disclosed. Responsive to determining that an incoming request is for a secure memory transaction, the incoming request is placed in a secure request container. The memory container then enters a state where re-ordering between requests for secure memory transactions placed in the secure request container and requests for non-secure memory transactions from other containers is prevented in a scheduling queue.
    Type: Application
    Filed: August 19, 2020
    Publication date: March 4, 2021
    Inventors: Craig E. Hampel, Liji Gopalakrishnan, John Eric Linstadt, Steven C. Woo
  • Publication number: 20210049115
    Abstract: A memory module having reduced access granularity. The memory module includes a substrate having signal lines thereon that form a control path and first and second data paths, and further includes first and second memory devices coupled in common to the control path and coupled respectively to the first and second data paths. The first and second memory devices include control circuitry to receive respective first and second memory access commands via the control path and to effect concurrent data transfer on the first and second data paths in response to the first and second memory access commands.
    Type: Application
    Filed: September 1, 2020
    Publication date: February 18, 2021
    Inventors: Craig E. Hampel, Frederick A. Ware
  • Publication number: 20210044417
    Abstract: A signaling system is disclosed. The signaling system includes a first integrated circuit (IC) chip to receive a data signal and a strobe signal. The first IC includes circuitry to sample the data signal at times indicated by the strobe signal to generate phase error information and circuitry to output the phase error information from the first IC device. The system further includes a signaling link and a second IC chip coupled to the first IC chip via the signaling link to output the data signal and the strobe signal to the first IC chip. The second IC chip includes delay circuitry to generate the strobe signal by delaying an aperiodic timing signal for a first time interval and timing control circuitry to receive the phase error information from the first IC chip and adjust the first time interval in accordance with the phase error information.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 11, 2021
    Inventors: Bret G. Stott, Craig E. Hampel, Frederick A. Ware
  • Publication number: 20210027825
    Abstract: A memory controller component includes transmit circuitry and adjusting circuitry. The transmit circuitry transmits a clock signal and write data to a DRAM, the write data to be sampled by the DRAM using a timing signal. The adjusting circuitry adjusts transmit timing of the write data and of the timing signal such that an edge transition of the timing signal is aligned with an edge transition of the clock signal at the DRAM.
    Type: Application
    Filed: June 8, 2020
    Publication date: January 28, 2021
    Inventors: Frederick A. Ware, Ely K. Tsern, Richard E. Perego, Craig E. Hampel
  • Publication number: 20210026956
    Abstract: Embodiments herein facilitate resisting side channel attacks through various implementations and combinations of implementations. In embodiments, this is accomplished by preventing sensitive data from consecutively following other data through potentially vulnerable resources which otherwise may cause data to leak. Where such vulnerabilities to attacks are known, suspected, or as a proactive precaution, a cleaner can be used to inhibit the sensitive data from passing through the vulnerable areas consecutively and thus inhibit the leakage. Embodiments also envision utilizing certain types of circuits to assist in preventing leakage. By using such circuits one can reduce or even potentially eliminate the requirement for cleaners as mentioned previously.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 28, 2021
    Inventors: Sami Saab, Elke De Mulder, Pankaj Rohatgi, Craig E. Hampel, Jeremy Cooper, Winthrop Wu
  • Patent number: 10897344
    Abstract: Systems and methods for performing cryptographic data processing operations in a manner resistant to external monitoring attacks. An example method may comprise: executing, by a processing device, a first data manipulation instruction, the first data manipulation instruction affecting a state of the processing device; executing a second data manipulation instruction, the second data manipulation instruction interacting with said internal state; and breaking a detectable interaction of the first data manipulation instruction and the second data manipulation instruction by executing a third data manipulation instruction utilizing an unpredictable data item.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: January 19, 2021
    Assignee: Cryptography Research, Inc.
    Inventors: Sami James Saab, Pankaj Rohatgi, Craig E. Hampel
  • Publication number: 20200351038
    Abstract: A method and system provides for execution of calibration cycles from time to time during normal operation of the communication channel. A calibration cycle includes de-coupling the normal data source from the transmitter and supplying a calibration pattern in its place. The calibration pattern is received from the communication link using the receiver on the second component. A calibrated value of a parameter of the communication channel is determined in response to the received calibration pattern. The steps involved in calibration cycles can be reordered to account for utilization patterns of the communication channel. For bidirectional links, calibration cycles are executed which include the step of storing received calibration patterns on the second component, and retransmitting such calibration patterns back to the first component for use in adjusting parameters of the channel at first component.
    Type: Application
    Filed: April 28, 2020
    Publication date: November 5, 2020
    Inventors: Frederick A. Ware, Richard E. Perego, Craig E. Hampel
  • Patent number: 10819447
    Abstract: A method and system that provides for execution of a first calibration sequence, such as upon initialization of a system, to establish an operation value, which utilizes an algorithm intended to be exhaustive, and executing a second calibration sequence from time to time, to measure drift in the parameter, and to update the operation value in response to the measured drift. The second calibration sequence utilizes less resources of the communication channel than does the first calibration sequence. In one embodiment, the first calibration sequence for measurement and convergence on the operation value utilizes long calibration patterns, such as codes that are greater than 30 bytes, or pseudorandom bit sequences having lengths of 2N?1 bits, where N is equal to or greater than 7, while the second calibration sequence utilizes short calibration patterns, such as fixed codes less than 16 bytes, and for example as short as 2 bytes long.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 27, 2020
    Assignee: Rambus Inc.
    Inventors: Craig E. Hampel, Frederick A. Ware, Richard E. Perego
  • Patent number: 10811080
    Abstract: A memory component includes a memory core comprising dynamic random access memory (DRAM) storage cells and a first circuit to receive external commands. The external commands include a read command that specifies transmitting data accessed from the memory core. The memory component also includes a second circuit to transmit data onto an external bus in response to a read command and pattern register circuitry operable during calibration to provide at least a first data pattern and a second data pattern. During the calibration, a selected one of the first data pattern and the second data pattern is transmitted by the second circuit onto the external bus in response to a read command received during the calibration. Further, at least one of the first and second data patterns is written to the pattern register circuitry in response to a write command received during the calibration.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: October 20, 2020
    Assignee: Rambus Inc.
    Inventors: Craig E. Hampel, Richard E. Perego, Stefanos Sidiropoulos, Ely K. Tsern, Frederick A. Ware
  • Patent number: 10795834
    Abstract: A memory module having reduced access granularity. The memory module includes a substrate having signal lines thereon that form a control path and first and second data paths, and further includes first and second memory devices coupled in common to the control path and coupled respectively to the first and second data paths. The first and second memory devices include control circuitry to receive respective first and second memory access commands via the control path and to effect concurrent data transfer on the first and second data paths in response to the first and second memory access commands.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 6, 2020
    Assignee: Rambus Inc.
    Inventors: Craig E. Hampel, Frederick A. Ware
  • Patent number: 10789358
    Abstract: Embodiments herein facilitate resisting side channel attacks through various implementations and combinations of implementations. In embodiments, this is accomplished by preventing sensitive data from consecutively following other data through potentially vulnerable resources which otherwise may cause data to leak. Where such vulnerabilities to attacks are known, suspected, or as a proactive precaution, a cleaner can be used to inhibit the sensitive data from passing through the vulnerable areas consecutively and thus inhibit the leakage. Embodiments also envision utilizing certain types of circuits to assist in preventing leakage. By using such circuits one can reduce or even potentially eliminate the requirement for cleaners as mentioned previously.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 29, 2020
    Assignee: CRYPTOGRAPHY RESEARCH, INC.
    Inventors: Sami Saab, Elke De Mulder, Pankaj Rohatgi, Craig E Hampel, Jeremy Cooper, Winthrop Wu
  • Publication number: 20200301858
    Abstract: A memory module includes a substrate, plural memory devices, and a buffer. The plural memory devices are organized into at least one rank, each memory device having plural banks. The buffer includes a primary interface for communicating with a memory controller and a secondary interface coupled to the plural memory devices. For each bank of each rank of memory devices, the buffer includes data buffer circuitry and address buffer circuitry. The data buffer circuitry includes first storage to store write data transferred during a bank cycle interval (tRR). The address buffer circuitry includes second storage to store address information corresponding to the data stored in the first storage.
    Type: Application
    Filed: April 4, 2020
    Publication date: September 24, 2020
    Inventors: Frederick A. Ware, Craig E. Hampel
  • Patent number: 10771231
    Abstract: A signaling system is disclosed. The signaling system includes a first integrated circuit (IC) chip to receive a data signal and a strobe signal. The first IC includes circuitry to sample the data signal at times indicated by the strobe signal to generate phase error information and circuitry to output the phase error information from the first IC device. The system further includes a signaling link and a second IC chip coupled to the first IC chip via the signaling link to output the data signal and the strobe signal to the first IC chip. The second IC chip includes delay circuitry to generate the strobe signal by delaying an aperiodic timing signal for a first time interval and timing control circuitry to receive the phase error information from the first IC chip and adjust the first time interval in accordance with the phase error information.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: September 8, 2020
    Assignee: Rambus Inc.
    Inventors: Bret G. Stott, Craig E. Hampel, Frederick A. Ware
  • Patent number: 10706910
    Abstract: A memory controller component includes transmit circuitry and adjusting circuitry. The transmit circuitry transmits a clock signal and write data to a DRAM, the write data to be sampled by the DRAM using a timing signal. The adjusting circuitry adjusts transmit timing of the write data and of the timing signal such that an edge transition of the timing signal is aligned with an edge transition of the clock signal at the DRAM.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: July 7, 2020
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Ely K. Tsern, Richard E. Perego, Craig E. Hampel
  • Publication number: 20200195357
    Abstract: A method and system that provides for execution of a first calibration sequence, such as upon initialization of a system, to establish an operation value, which utilizes an algorithm intended to be exhaustive, and executing a second calibration sequence from time to time, to measure drift in the parameter, and to update the operation value in response to the measured drift. The second calibration sequence utilizes less resources of the communication channel than does the first calibration sequence. In one embodiment, the first calibration sequence for measurement and convergence on the operation value utilizes long calibration patterns, such as codes that are greater than 30 bytes, or pseudorandom bit sequences having lengths of 2N?1 bits, where N is equal to or greater than 7, while the second calibration sequence utilizes short calibration patterns, such as fixed codes less than 16 bytes, and for example as short as 2 bytes long.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 18, 2020
    Inventors: Craig E. Hampel, Frederick A. Ware, Richard E. Perego
  • Publication number: 20200175162
    Abstract: Embodiments herein facilitate resisting side channel attacks through various implementations and combinations of implementations. In embodiments, this is accomplished by preventing sensitive data from consecutively following other data through potentially vulnerable resources which otherwise may cause data to leak. Where such vulnerabilities to attacks are known, suspected, or as a proactive precaution, a cleaner can be used to inhibit the sensitive data from passing through the vulnerable areas consecutively and thus inhibit the leakage. Embodiments also envision utilizing certain types of circuits to assist in preventing leakage. By using such circuits one can reduce or even potentially eliminate the requirement for cleaners as mentioned previously.
    Type: Application
    Filed: October 12, 2016
    Publication date: June 4, 2020
    Inventors: Sami James Saab, Elke De Mulder, Pankaj Rohatgi, Craig E. Hampel, Jeremy Cooper, Winthrop Wu
  • Patent number: 10673582
    Abstract: A method and system provides for execution of calibration cycles from time to time during normal operation of the communication channel. A calibration cycle includes de-coupling the normal data source from the transmitter and supplying a calibration pattern in its place. The calibration pattern is received from the communication link using the receiver on the second component. A calibrated value of a parameter of the communication channel is determined in response to the received calibration pattern. The steps involved in calibration cycles can be reordered to account for utilization patterns of the communication channel. For bidirectional links, calibration cycles are executed which include the step of storing received calibration patterns on the second component, and retransmitting such calibration patterns back to the first component for use in adjusting parameters of the channel at first component.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: June 2, 2020
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Richard E. Perego, Craig E. Hampel
  • Publication number: 20200125756
    Abstract: Systems and methods for implementing access control by systems-on-chip (SoCs). An example SoC may comprise: an access control unit comprising a secure memory for storing access control data, the access control unit to: receive a message comprising an access control data item; store the access control data item in the secure memory; perform at least one of: authenticating the message using a message digest function, or validating contents of the secure memory by comparing a stored reference value with a calculated value of a message digest function of the contents of the secure memory; and control, in view of the access control data item, access by an initiator device to a target device.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 23, 2020
    Inventors: Craig E. Hampel, Jean-Michel Cioranesco, Rodrigo Portella do Canto, Guilherme Ozari de Almeida
  • Patent number: 10628348
    Abstract: A memory module includes a substrate, plural memory devices, and a buffer. The plural memory devices are organized into at least one rank, each memory device having plural banks. The buffer includes a primary interface for communicating with a memory controller and a secondary interface coupled to the plural memory devices. For each bank of each rank of memory devices, the buffer includes data buffer circuitry and address buffer circuitry. The data buffer circuitry includes first storage to store write data transferred during a bank cycle interval (tRR). The address buffer circuitry includes second storage to store address information corresponding to the data stored in the first storage.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 21, 2020
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Craig E. Hampel
  • Publication number: 20200106598
    Abstract: A signaling system is disclosed. The signaling system includes a first integrated circuit (IC) chip to receive a data signal and a strobe signal. The first IC includes circuitry to sample the data signal at times indicated by the strobe signal to generate phase error information and circuitry to output the phase error information from the first IC device. The system further includes a signaling link and a second IC chip coupled to the first IC chip via the signaling link to output the data signal and the strobe signal to the first IC chip. The second IC chip includes delay circuitry to generate the strobe signal by delaying an aperiodic timing signal for a first time interval and timing control circuitry to receive the phase error information from the first IC chip and adjust the first time interval in accordance with the phase error information.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 2, 2020
    Inventors: Bret G. Stott, Craig E. Hampel, Frederick A. Ware