Patents by Inventor Craig Halberstadt

Craig Halberstadt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240043805
    Abstract: Methods, compositions, kits and systems disclosed herein can be directed to engineered cells for producing synthetic leathers, artificial epidermal layers, artificial dermal layers, layered structures, products produced therefrom and methods of producing the same.
    Type: Application
    Filed: August 21, 2023
    Publication date: February 8, 2024
    Inventors: Craig HALBERSTADT, Ying Hsuan SHIH
  • Publication number: 20140377867
    Abstract: Apparatuses, systems, and methods are provided for growing and maintaining cells. A three-dimensional matrix, such as a hydrogel material, is seeded with cells and placed in a bioreactor having two compartments. The matrix is supported between the two compartments by first and second porous materials, which engage opposing surfaces of the matrix. A first media stream having certain properties is propagated through the first compartment, where it contacts one surface of the matrix via the first porous material. A second media stream having different properties is propagated through the second compartment such that it contacts the opposite surface of the matrix via the second porous material. Through migration of each stream at least partially into the matrix, various controlled gradients may be established within the matrix, encouraging growth of the cells. Such gradients include osmotic pressure, oscillating osmotic pressure, hydrostatic pressure, oxygen tension, and/or nutrient gradients.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Craig Halberstadt, Richard Peindl
  • Patent number: 8852925
    Abstract: Apparatuses, systems, and methods are provided for growing and maintaining cells. A three-dimensional matrix, such as a hydrogel material, is seeded with cells and placed in a bioreactor having two compartments. The matrix is supported between the two compartments by first and second porous materials, which engage opposing surfaces of the matrix. A first media stream having certain properties is propagated through the first compartment, where it contacts one surface of the matrix via the first porous material. A second media stream having different properties is propagated through the second compartment such that it contacts the opposite surface of the matrix via the second porous material. Through migration of each stream at least partially into the matrix, various controlled gradients may be established within the matrix, encouraging growth of the cells. Such gradients include osmotic pressure, oscillating osmotic pressure, hydrostatic pressure, oxygen tension, and/or nutrient gradients.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 7, 2014
    Assignee: The Charlotte-Mecklenburg Hospital Authority
    Inventors: Craig Halberstadt, Richard Peindl
  • Publication number: 20090162331
    Abstract: The present invention relates to the use of Sertoli cells and myoid cells for creating an immunologically privileged site in a mammalian subject, thereby facilitating the transplantation of cells that produce a biological factor in the treatment of a disease that results from a deficiency of such biological factor. Pharmaceutical compositions containing Sertoli cells and myoid cells, as well as therapeutic methods relating to the use of these cells are provided by the present invention.
    Type: Application
    Filed: May 9, 2008
    Publication date: June 25, 2009
    Inventors: Jannette Dufour, Craig Halberstadt, Richelle Hemendinger, Ray V. Rajotte, Alfred V. Vasconcellos, Paul Gores, Dwaine Emerich, Greg Korbutt
  • Publication number: 20090155908
    Abstract: Apparatuses, systems, and methods are provided for growing and maintaining cells. A three-dimensional matrix, such as a hydrogel material, is seeded with cells and placed in a bioreactor having two compartments. The matrix is supported between the two compartments by first and second porous materials, which engage opposing surfaces of the matrix. A first media stream having certain properties is propagated through the first compartment, where it contacts one surface of the matrix via the first porous material. A second media stream having different properties is propagated through the second compartment such that it contacts the opposite surface of the matrix via the second porous material. Through migration of each stream at least partially into the matrix, various controlled gradients may be established within the matrix, encouraging growth of the cells. Such gradients include osmotic pressure, oscillating osmotic pressure, hydrostatic pressure, oxygen tension, and/or nutrient gradients.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Inventors: Craig HALBERSTADT, Richard Peindl
  • Patent number: 7399751
    Abstract: The present invention provides a method of providing an individual with a biological factor or intermediate thereof which comprises introducing into the individual Sertoli cells genetically altered to produce the biological factor or intermediate thereof. The genetically altered Sertoli cells are administered in an amount effective to produce the desired effect. Aside from producing the biological factor or intermediate thereof, the engineered Sertoli cells also create an immunologically privileged site. Vectors comprising a promoter which functions in Sertoli cells operably linked to coding sequence for a desired biological factor are also provided as are Sertoli cells comprising such vectors. A pharmaceutical composition comprising Sertoli cells genetically altered to produce a biological factor is also provided.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: July 15, 2008
    Assignee: Sertoli Technologies, Inc.
    Inventors: Shaun A. Kirkpatrick, Paul Gores, Craig Halberstadt
  • Publication number: 20080145348
    Abstract: The present invention provides a method of providing an individual with a biological factor or intermediate thereof which comprises introducing into the individual Sertoli cells genetically altered to produce the biological factor or intermediate thereof. The genetically altered Sertoli cells are administered in an amount effective to produce the desired effect. Aside from producing the biological factor or intermediate thereof, the engineered Sertoli cells also create an immunologically privileged site. Vectors comprising a promoter which functions in Sertoli cells operably linked to coding sequence for a desired biological factor are also provided as are Sertoli cells comprising such vectors. A pharmaceutical composition comprising Sertoli cells genetically altered to produce a biological factor is also provided.
    Type: Application
    Filed: February 20, 2008
    Publication date: June 19, 2008
    Inventors: Shaun A. Kirkpatrick, Paul Gores, Craig Halberstadt
  • Publication number: 20050118145
    Abstract: The present invention relates to the use of Sertoli cells and myoid cells for creating an immunologically privileged site in a mammalian subject, thereby facilitating the transplantation of cells that produce a biological factor in the treatment of a disease that results from a deficiency of such biological factor. Pharmaceutical compositions containing Sertoli cells and myoid cells, as well as therapeutic methods relating to the use of these cells are provided by the present invention.
    Type: Application
    Filed: July 2, 2004
    Publication date: June 2, 2005
    Inventors: Jannette Dufour, Craig Halberstadt, Richelle Hemendinger, Ray Rajotte, Alfred Vasconcellos, Paul Gores, Dwaine Emerich, Greg Korbutt
  • Publication number: 20050002982
    Abstract: The present invention comprises an implantable device that provides artificial tissues for repair, augmentation and reconstructive surgery which have mechanical properties comparable to the natural tissues that they supplement or replace. Such devices can be produced by a tissue engineering method comprising seeding a polymer matrix with a first cell type and a second cell type and culturing the seeded matrix under conditions suitable for cell growth or maintenance, whereby a tissue comprising a mixed cell population containing both the first and second cell types is produced. The tissue produced by this method contains a mixed population in which the two cell types are intimately associated without apparent stratification and has mechanical properties which are intermediate between similarly produced tissues containing either one of the two cell types. This invention is particularly useful in forming implantable structural members.
    Type: Application
    Filed: December 1, 2003
    Publication date: January 6, 2005
    Inventors: David Mooney, Charles Vacanti, Craig Halberstadt, Andrea Ferguson, Jennifer Marler, Byung-Soo Kim
  • Patent number: 6511650
    Abstract: This invention is directed to a new approach to form porous hydrogel materials by first creating gas pockets in the gel and then removing this gas. The removal of the gas creates a porous material, and the initial incorporation of sufficient gas allows one to create a material with an open, interconnected pore structure. Advantageous features of the resulting materials, in addition to their interconnected pore structure, may include that the pore structure is maintained over extended time periods and that the gels maintain a high mechanical integrity that allows seeding with cells and implantation without destruction or compression of the material.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: January 28, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Petra Eiselt, Craig Halberstadt, David Mooney, Julia Yeh, Rachel Latvala, Jon A. Rowley
  • Publication number: 20020192200
    Abstract: The present invention provides a method of providing an individual with a biological factor or intermediate thereof which comprises introducing into the individual Sertoli cells genetically altered to produce the biological factor or intermediate thereof. The genetically altered Sertoli cells are administered in an amount effective to produce the desired effect. Aside from producing the biological factor or intermediate thereof, the engineered Sertoli cells also create an immunologically privileged site. Vectors comprising a promoter which functions in Sertoli cells operably linked to coding sequence for a desired biological factor are also provided as are Sertoli cells comprising such vectors. A pharmaceutical composition comprising Sertoli cells genetically altered to produce a biological factor is also provided.
    Type: Application
    Filed: August 15, 2002
    Publication date: December 19, 2002
    Inventors: Shaun A. Kirkpatrick, Paul Gores, Craig Halberstadt
  • Patent number: 6034068
    Abstract: A trans-epithelial appliance or shaped article coated with laminin 5. Laminin 5 stimulates cell attachment and may be comprise an insoluble or soluble cell matrix. The appliance will be useful for reducing inflammation and/or infection at the site of entry of the appliance. The appliance may also be used to stimulate gum junctional epithelium adhesion in the treatment of, for example, gingivitis and periodontitis.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: March 7, 2000
    Assignee: Desmos, Incorporated
    Inventor: Craig Halberstadt
  • Patent number: 5681587
    Abstract: A method of increasing the number of adult pancreatic islet cells available for transplantation by contacting the cells with laminin 5 extracellular matrix. When contacted with the deposited matrix produced by 804G rat bladder carcinoma cells, a 1,500 fold increase in cell number is observed after three passages in culture. Islet cell expansion also occurs when cells are contacted with 804G soluble matrix. The expanded islet cells contain insulin and respond to glucose challenge.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: October 28, 1997
    Assignee: Desmos, Inc.
    Inventors: Craig Halberstadt, Michael Zimber, John J. Grzesiak
  • Patent number: 5672361
    Abstract: A method of expanding the number of pancreatic islet cells for transplantation. Fetal islet cells are cultured in the presence of laminin 5 extracellular matrix, resulting in a significant increase in cell number after passaging in culture. The expanded islet cells contain insulin and respond to glucose challenge.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: September 30, 1997
    Assignee: Desmos, Inc.
    Inventors: Craig Halberstadt, John J. Grzesiak