Patents by Inventor Craig Hickman

Craig Hickman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060201540
    Abstract: Stepper and/or scanner machines including cleaning devices and methods for cleaning stepper and/or scanner machines are disclosed herein. In one embodiment, a stepper and/or scanner machine includes a housing, an illuminator, a lens, a workpiece support, a cleaning device for removing contaminants from the workpiece support, and a stage carrying the workpiece support. The stage and/or cleaning device is movable to selectively position the workpiece support proximate to the cleaning device. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 C.F.R. § 1.72(b).
    Type: Application
    Filed: May 10, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Craig Hickman, Paul Shirley
  • Publication number: 20060201535
    Abstract: Stepper and/or scanner machines including cleaning devices and methods for cleaning stepper and/or scanner machines are disclosed herein. In one embodiment, a stepper and/or scanner machine includes a housing, an illuminator, a lens, a workpiece support, a cleaning device for removing contaminants from the workpiece support, and a stage carrying the workpiece support. The stage and/or cleaning device is movable to selectively position the workpiece support proximate to the cleaning device. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 10, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Craig Hickman, Paul Shirley
  • Publication number: 20060158631
    Abstract: A method and apparatus for exposing a radiation-sensitive material of a microlithographic substrate to a selected radiation. The method can include directing the radiation along a radiation path in a first direction toward a reticle, passing the radiation from the reticle and to the microlithographic substrate along the radiation path in a second direction, and moving the reticle relative to the radiation path along a reticle path generally normal to the first direction. The microlithographic substrate can move relative to the radiation path along a substrate path having a first component generally parallel to the second direction, and a second component generally perpendicular to the second direction. The microlithographic substrate can move generally parallel to and generally perpendicular to the second direction in a periodic manner while the reticle moves along the reticle path to change a relative position of a focal plane of the radiation.
    Type: Application
    Filed: March 17, 2006
    Publication date: July 20, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Ulrich Boettiger, Scott Light, William Rericha, Craig Hickman
  • Patent number: 7038762
    Abstract: A method and apparatus for exposing a radiation-sensitive material of a microlithographic substrate to a selected radiation. The method can include directing the radiation along a radiation path in a first direction toward a reticle, passing the radiation from the reticle and to the microlithographic substrate along the radiation path in a second direction, and moving the reticle relative to the radiation path along a reticle path generally normal to the first direction. The microlithographic substrate can move relative to the radiation path along a substrate path having a first component generally parallel to the second direction, and a second component generally perpendicular to the second direction. The microlithographic substrate can move generally parallel to and generally perpendicular to the second direction in a periodic manner while the reticle moves along the reticle path to change a relative position of a focal plane of the radiation.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: May 2, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ulrich C. Boettiger, Scott L. Light, William T. Rericha, Craig A. Hickman
  • Patent number: 6967707
    Abstract: A corrective filter for use in an optical system to correct a defect in a reticle and/or pellicle. The corrective filter may be positioned between a light source and the reticle, between the reticle and a wafer, or in combination with the reticle and/or pellicle. The invention provides a method of characterizing the optical properties of the corrective filter in a photolithography system.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: November 22, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Craig A. Hickman
  • Publication number: 20050148203
    Abstract: An in situ photoresist thickness characterization process and apparatus characterizes a photoresist process used for processing a semiconductor wafer. Photoresist is dispensed on a spinning semiconductor wafer as part of the characterization process. The thickness of the photoresist is monitored at a plurality of locations on the spinning semiconductor wafer at specific time intervals while the photoresist flows across the wafer. The thicknesses are recorded from the plurality of locations and for the specific time intervals for use in making process control decisions. A semiconductor process for coating a semiconductor wafer according to characteristics derived from the characterization process deposits photoresist on a wafer and spin-coats the wafer according to the photoresist process characterization process.
    Type: Application
    Filed: December 29, 2003
    Publication date: July 7, 2005
    Inventors: Paul Shirley, Craig Hickman
  • Patent number: 6909984
    Abstract: A system is provided for producing an integrated circuit using a stepper and a scanner in successive stages. Calibration data developed for the transfer of a wafer from the stepper to the scanner while maintaining the same orientation is transformed, and the transformed data is used to align a rotated wafer on the scanner.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventors: James W. Laursen, Craig A. Hickman
  • Publication number: 20050068513
    Abstract: A corrective filter for use in an optical system to correct a defect in a reticle and/or pellicle. The corrective filter may be positioned between a light source and the reticle, between the reticle and a wafer, or in combination with the reticle and/or pellicle. The invention provides a method of characterizing the optical properties of the corrective filter in a photolithography system.
    Type: Application
    Filed: October 28, 2004
    Publication date: March 31, 2005
    Inventor: Craig Hickman
  • Publication number: 20050041228
    Abstract: A method and apparatus for exposing a radiation-sensitive material of a microlithographic substrate to a selected radiation. The method can include directing the radiation along a radiation path in a first direction toward a reticle, passing the radiation from the reticle and to the microlithographic substrate along the radiation path in a second direction, and moving the reticle relative to the radiation path along a reticle path generally normal to the first direction. The microlithographic substrate can move relative to the radiation path along a substrate path having a first component generally parallel to the second direction, and a second component generally perpendicular to the second direction. The microlithographic substrate can move generally parallel to and generally perpendicular to the second direction in a periodic manner while the reticle moves along the reticle path to change a relative position of a focal plane of the radiation.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 24, 2005
    Inventors: Ulrich Boettiger, Scott Light, William Rericha, Craig Hickman
  • Publication number: 20050028314
    Abstract: Stepper and/or scanner machines including cleaning devices and methods for cleaning stepper and/or scanner machines are disclosed herein. In one embodiment, a stepper and/or scanner machine includes a housing, an illuminator, a lens, a workpiece support, a cleaning device for removing contaminants from the workpiece support, and a stage carrying the workpiece support. The stage and/or cleaning device is movable to selectively position the workpiece support proximate to the cleaning device. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 C.F.R. § 1.72(b).
    Type: Application
    Filed: August 6, 2003
    Publication date: February 10, 2005
    Inventors: Craig Hickman, Paul Shirley
  • Patent number: 6844933
    Abstract: A system is provided for processing a semiconductor wafer. The wafer is pre-aligned at a first workstation. The pre-alignment may be accomplished by an edge sensor. Alignment mark portions of the wafer are exposed at the same workstation. A fiber optic bundle may be used to expose the alignment mark portions. A high degree of accuracy is not needed to expose the alignment mark portions. The accuracy achieved by the pre-alignment mechanism and the fiber optic bundle is sufficient. The invention saves processing time at a subsequent stepper or scanner exposure workstation.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: January 18, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Craig A. Hickman
  • Patent number: 6817057
    Abstract: Wafer holder cleaning devices, systems and methods that are capable of removing contaminants from a wafer holder. An embodiment includes a particle removal surface on the cleaning device. An embodiment of the surface is a brush. An embodiment includes moving the surface into contact with the wafer holder. An embodiment includes moving the surface into a close, non-contacting relationship to the wafer holder. An embodiment includes a vacuum removing the particles from the wafer holder. In an embodiment, the wafer holder is a spindle chuck. In an embodiment, the spindle chuck is in a fabrication station. In an embodiment, one of the cleaning device and wafer holder rotates.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: November 16, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Paul Shirley, Craig Hickman
  • Patent number: 6812999
    Abstract: A corrective filter for use in an optical system to correct a defect in a reticle and/or pellicle. The corrective filter may be positioned between a light source and the reticle, between the reticle and a wafer, or in combination with the reticle and/or pellicle. The invention provides a method of characterizing the optical properties of the corrective filter.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Craig A. Hickman
  • Patent number: 6784975
    Abstract: A method and apparatus for exposing a radiation-sensitive material of a microlithographic substrate to a selected radiation. The method can include directing the radiation along a radiation path in a first direction toward a reticle, passing the radiation from the reticle and to the microlithographic substrate along the radiation path in a second direction, and moving the reticle relative to the radiation path along a reticle path generally normal to the first direction. The microlithographic substrate can move relative to the radiation path along a substrate path having a first component generally parallel to the second direction, and a second component generally perpendicular to the second direction. The microlithographic substrate can move generally parallel to and generally perpendicular to the second direction in a periodic manner while the reticle moves along the reticle path to change a relative position of a focal plane of the radiation.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 31, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ulrich C. Boettiger, Scott L. Light, William T. Rericha, Craig A. Hickman
  • Publication number: 20040159333
    Abstract: Wafer holder cleaning devices, systems and methods that are capable of removing contaminants from a wafer holder. An embodiment includes a particle removal surface on the cleaning device. An embodiment of the surface is a brush. An embodiment includes moving the surface into contact with the wafer holder. An embodiment includes moving the surface into a close, non-contacting relationship to the wafer holder. An embodiment includes a vacuum removing the particles from the wafer holder. In an embodiment, the wafer holder is a spindle chuck. In an embodiment, the spindle chuck is in a fabrication station. In an embodiment, one of the cleaning device and wafer holder rotates.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 19, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Paul Shirley, Craig Hickman
  • Publication number: 20040158423
    Abstract: A system is provided for producing an integrated circuit using a stepper and a scanner in successive stages. Calibration data developed for the transfer of a wafer from the stepper to the scanner while maintaining the same orientation is transformed, and the transformed data is used to align a rotated wafer on the scanner.
    Type: Application
    Filed: February 5, 2004
    Publication date: August 12, 2004
    Inventors: James W. Laursen, Craig A. Hickman
  • Patent number: 6727975
    Abstract: A corrective filter for use in an optical system to correct a defect in a reticule and/or pellicle. The corrective filter may be positioned between a light source and the reticule, between the reticule and a wafer, or in combination with the reticule and/or pellicle. The invention provides a method of characterizing the optical properties of the corrective filter.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: April 27, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Craig A. Hickman
  • Patent number: 6708131
    Abstract: A system is provided for producing an integrated circuit using a stepper and a scanner in successive stages. Calibration data developed for the transfer of a wafer from the stepper to the scanner while maintaining the same orientation is transformed, and the transformed data is used to align a rotated wafer on the scanner.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: March 16, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James W. Laursen, Craig A. Hickman
  • Publication number: 20030234915
    Abstract: A corrective filter for use in an optical system to correct a defect in a reticle and/or pellicle. The corrective filter may be positioned between a light source and the reticle, between the reticle and a wafer, or in combination with the reticle and/or pellicle. The invention provides a method of characterizing the optical properties of the corrective filter.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 25, 2003
    Inventor: Craig A. Hickman
  • Publication number: 20030133114
    Abstract: A system is provided for processing a semiconductor wafer. The wafer is pre-aligned at a first workstation. The pre-alignment may be accomplished by an edge sensor. Alignment mark portions of the wafer are exposed at the same workstation. A fiber optic bundle may be used to expose the alignment mark portions. A high degree of accuracy is not needed to expose the alignment mark portions. The accuracy achieved by the pre-alignment mechanism and the fiber optic bundle is sufficient. The invention saves processing time at a subsequent stepper or scanner exposure workstation.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 17, 2003
    Inventor: Craig A. Hickman