Patents by Inventor Craig J. Hamilton

Craig J. Hamilton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9941660
    Abstract: A tunable lasing device including a vertical external cavity surface emitting laser, adapted to generate a fundamental laser beam in response to pumping from a pump source, said fundamental laser beam having a fundamental wavelength and a fundamental linewidth; a fundamental resonator cavity adapted to resonate the fundamental beam therein; a first optical element located within the fundamental resonator cavity for control of the fundamental linewidth of the fundamental beam; a Raman resonator located at least partially in said fundamental resonator adapted to receive the fundamental beam and comprising therein, a solid state Raman active medium located therein for generating at least a first Stokes beam from the fundamental beam wherein said Raman resonator cavity is adapted to resonate said Stokes beam therein and further adapted to emit an output beam; and further comprising a nonlinear medium located within the Raman resonator cavity for nonlinear frequency conversion of at least one of the beams present
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 10, 2018
    Assignee: Macquarie University
    Inventors: Jipeng Lin, Helen M. Pask, David James Spence, Craig J. Hamilton, Graeme P. A. Malcolm
  • Publication number: 20140269787
    Abstract: A tunable lasing device including a vertical external cavity surface emitting laser, adapted to generate a fundamental laser beam in response to pumping from a pump source, said fundamental laser beam having a fundamental wavelength and a fundamental linewidth; a fundamental resonator cavity adapted to resonate the fundamental beam therein; a first optical element located within the fundamental resonator cavity for control of the fundamental linewidth of the fundamental beam; a Raman resonator located at least partially in said fundamental resonator adapted to receive the fundamental beam and comprising therein, a solid state Raman active medium located therein for generating at least a first Stokes beam from the fundamental beam wherein said Raman resonator cavity is adapted to resonate said Stokes beam therein and further adapted to emit an output beam; and further comprising a nonlinear medium located within the Raman resonator cavity for nonlinear frequency conversion of at least one of the beams present
    Type: Application
    Filed: November 9, 2012
    Publication date: September 18, 2014
    Applicant: Macquarie University
    Inventors: Jipeng Lin, Helen M. Pask, David James Spence, Craig J. Hamilton, Graeme P. Malcolm
  • Patent number: 7815096
    Abstract: It has been observed that turbulent solder flow, particularly at the opening of a conventional flow well, correlates to a greater degree of Cu dissolution of the PTH barrels of a PCB, especially those that are aligned with the opening. A more laminar solder flow is created to more evenly distribute the solder flow and thus reduce the rate of Cu dissolution near the flow well opening, particularly during a PTH rework process. In one aspect, a flow well for a soldering machine is provided comprising a flow distribution element, wherein solder flowing into the flow well is distributed by the flow distribution element to provide a more laminar flow.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: October 19, 2010
    Assignee: Celestica International Inc.
    Inventor: Craig J. Hamilton
  • Publication number: 20090166399
    Abstract: It has been observed that turbulent solder flow, particularly at the opening of a conventional flow well, correlates to a greater degree of Cu dissolution of the PTH barrels of a PCB, especially those that are aligned with the opening. A more laminar solder flow is created to more evenly distribute the solder flow and thus reduce the rate of Cu dissolution near the flow well opening, particularly during a PTH rework process. In one aspect, a flow well for a soldering machine is provided comprising a flow distribution element, wherein solder flowing into the flow well is distributed by the flow distribution element to provide a more laminar flow.
    Type: Application
    Filed: November 17, 2008
    Publication date: July 2, 2009
    Applicant: CELESTICA INTERNATIONAL INC.
    Inventor: Craig J. Hamilton