Patents by Inventor Craig J. Hawkins

Craig J. Hawkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140195129
    Abstract: A vehicle includes an engine, an engine control module (ECM), and a dual clutch transmission (DCT) assembly. The DCT assembly has first and second input clutches, first and second gear sets selectively connected to the engine via the respective first and second input clutches, and a transmission control module (TCM). In executing a launch control method, the TCM receives a launch request, receives an actual engine torque, and determines the inertia and acceleration of the engine. The TCM then calculates a clutch torque for the particular input clutch used for vehicle launch as a function of the actual engine torque and the product of the inertia and the acceleration, compares the calculated clutch torque to the commanded clutch torque, modifies a torque-to-position (TTP) table depending on the comparison result, and transmits a clutch position signal to the designated input clutch to command an apply position extracted from the TTP table.
    Type: Application
    Filed: June 13, 2013
    Publication date: July 10, 2014
    Inventors: Colin Hultengren, Craig J. Hawkins, Matthew D. Whitton, Crystal Nassouri, Jonathan P. Kish
  • Publication number: 20140195131
    Abstract: A vehicle includes an engine, a dry dual-clutch transmission (dDCT) having a pair of input clutches and a gearbox containing oddly- and evenly-numbered gear sets, and a transmission control module (TCM). Application of one of input clutches connects the engine to a corresponding one of the oddly- or evenly-numbered gear sets. The TCM includes feed-forward PID-based control logic, and a torque-to-position (TTP) table for each input clutch. The TCM commands a position of a designated input clutch during a power-on upshift using the feed-forward, PID-based control logic, and selectively adapts the TTP table as a function of an inertia and acceleration value of the engine. The TCM may apply an asymmetrical handoff profile to commanded oncoming and offgoing clutch torques during the torque phase of the upshift. The TCM may also adjust the TTP table as a function of the frequency of use of the input clutches.
    Type: Application
    Filed: May 31, 2013
    Publication date: July 10, 2014
    Inventors: Brian M. Porto, Matthew D. Whitton, Steven P. Moorman, Craig J. Hawkins, Roberto Diaz
  • Patent number: 8579762
    Abstract: A clutch control system for a vehicle includes a shift command module and an offgoing clutch control module. The shift command module commands an upshift of a clutch-to-clutch transmission when an engine torque is less than a predetermined negative torque. The offgoing clutch control module increases an offgoing clutch pressure above a predetermined apply pressure in response to the command. An offgoing clutch is fully engaged when the offgoing clutch pressure is greater than the predetermined apply pressure.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 12, 2013
    Inventors: Mark A Yacoub, Matthew D. Whitton, Craig J. Hawkins, Mark A. Schang, Robert L. Williams, Christopher Jay Weingartz
  • Patent number: 8504265
    Abstract: A control system for an engine includes a torque phase detection module, a torque request generation module, and an engine torque control module. The torque phase detection module detects a start of a torque phase of an upshift of a transmission coupled to the engine. The torque request generation module generates an engine torque request at the start of the torque phase of the transmission upshift. The engine torque control module controls engine torque during the torque phase of the transmission upshift based on the engine torque request.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 6, 2013
    Inventors: Andrew W. Baur, Craig J. Hawkins, Michael J. Pitsch
  • Publication number: 20120296537
    Abstract: A control system for an engine includes a torque phase detection module, a torque request generation module, and an engine torque control module. The torque phase detection module detects a start of a torque phase of an upshift of a transmission coupled to the engine. The torque request generation module generates an engine torque request at the start of the torque phase of the transmission upshift. The engine torque control module controls engine torque during the torque phase of the transmission upshift based on the engine torque request.
    Type: Application
    Filed: September 23, 2011
    Publication date: November 22, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Andrew W. Baur, Craig J. Hawkins, Michael J. Pitsch
  • Patent number: 8219291
    Abstract: A method of controlling a vehicle includes signaling a transmission to shift into a first gear ratio and sensing a current gear ratio of the transmission after signaling the transmission to shift into the first gear ratio. The method further includes implementing a diagnostic transmission shift control strategy to override a normal transmission shift control strategy when the current sensed gear ratio is not equal to the requested first gear ratio to verify proper functionality of a mode control valve that is responsible for shifting the transmission into the first gear ratio.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Emmanuel V. Yabes, Brian J. Pellerito, Michael Chernyak, Craig J. Hawkins, Cheol W. Kim
  • Publication number: 20120101697
    Abstract: A method of executing a downshift in a fixed-gear powertrain having an input node and an output node related by a starting speed ratio before the downshift and a finishing speed ratio after is provided. The downshift includes a torque phase and an inertia phase. A starting output torque is calculated as a function of a starting driver request. An electric machine applies a starting regenerative input torque which is calculated as substantially equal to the starting output torque divided by the starting speed ratio. A finishing output torque is calculated as a function of a finishing driver request. The electric machine applies a finishing regenerative input torque which is calculated as substantially equal to the finishing output torque divided by the finishing speed ratio.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Craig J. Hawkins, Adam J. Heisel, Christopher E. Whitney, Matthew D. Whitton, Roger Joseph Rademacher, Keith D. Van Maanen
  • Publication number: 20120053799
    Abstract: A method of controlling a vehicle includes signaling a transmission to shift into a first gear ratio and sensing a current gear ratio of the transmission after signaling the transmission to shift into the first gear ratio. The method further includes implementing a diagnostic transmission shift control strategy to override a normal transmission shift control strategy when the current sensed gear ratio is not equal to the requested first gear ratio to verify proper functionality of a mode control valve that is responsible for shifting the transmission into the first gear ratio.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Emmanuel V. Yabes, Brian J. Pellerito, Michael Chernyak, Craig J. Hawkins, Cheol W. Kim
  • Publication number: 20120010046
    Abstract: A clutch control system for a vehicle includes a shift command module and an offgoing clutch control module. The shift command module commands an upshift of a clutch-to-clutch transmission when an engine torque is less than a predetermined negative torque. The offgoing clutch control module increases an offgoing clutch pressure above a predetermined apply pressure in response to the command. An offgoing clutch is fully engaged when the offgoing clutch pressure is greater than the predetermined apply pressure.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Mark A. Yacoub, Matthew D. Whitton, Craig J. Hawkins, Mark A. Schang, Robert L. Williams, Christopher Jay Weingartz
  • Patent number: 7363138
    Abstract: A method of controlling traction in a vehicle having at least one non-driven wheel speed sensor. Actual vehicle acceleration and a wheel speed difference are detected. At least one of the actual vehicle acceleration and the wheel speed difference is compared to at least one of a predetermined vehicle acceleration and a predetermined wheel speed difference to detect vehicle wheel slip. A wheel torque is reduced in response to detected wheel slip. The foregoing method allows traction control to be installed in many types of vehicles, including vehicles without ABS. More than one type of wheel slip detection can be implemented, and various types of wheel slip can be detected.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 22, 2008
    Assignee: General Motors Corporation
    Inventors: Herve Scelers, Paul A. Bauerle, Ruobai Zhang, Craig J. Hawkins, Hiep T. Do, Timothy J. Keenan