Patents by Inventor Craig L. Schmidt

Craig L. Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7807299
    Abstract: A lithium-ion battery includes a positive electrode including a positive current collector, a first active material, and a second active material. The battery also includes a negative electrode having a negative current collector and a third active material, the third active material including a lithium titanate material. The first active material, second active material, and third active materials are configured to allow doping and undoping of lithium ions. The second active material exhibits charging and discharging capacity below a corrosion potential of the negative current collector and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 5, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7803481
    Abstract: A battery includes a positive electrode having a current collector and a first active material and a negative electrode having a current collector and a second active material. The battery also includes an auxiliary electrode having a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 28, 2010
    Assignee: Medtronic, Inc,
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20100239908
    Abstract: A lithium-ion battery includes a positive electrode comprising a current collector and a first active material and a negative electrode comprising a current collector, a second active material, and a third active material. The second active material comprises a lithium titanate material and the third active material is selected from the group consisting of LixVO2 where x is between 0.05 and 0.4, LiMxMn(2?x)O4 where M is a metal and x is less than or equal to 1, V6O13, V2O5, V3O8, MoO3, TiS2, WO2, MoO2, RuO2, and combinations thereof. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Application
    Filed: May 27, 2010
    Publication date: September 23, 2010
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7794869
    Abstract: A battery includes a positive electrode having a current collector and a first active material and a negative electrode having a current collector and a second active material. The battery also includes an auxiliary electrode having a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: September 14, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7740985
    Abstract: A lithium-ion battery includes a positive electrode that has a current collector and a first active material and a negative electrode that has a current collector, a second active material, and a third active material. The second active material includes a lithium titanate material and the third active material is a material that can be one or more of the following: LiMn2O4, LixVO2 where x is between 0.05 and 0.4, LiMxMn(2?x)O4 where M is a metal and x is less than or equal to 1, V6O13, V2O5, V3O8, MoO3, TiS2, WO2, MoO2, RuO2, and combinations thereof. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: June 22, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20100136426
    Abstract: A resistance-stabilizing additive to an electrolyte for a battery cell in an implantable medical device is presented. At least one resistance-stabilizing additive is selected from a group comprising an electron withdrawing group, an aromatic diacid salt, an inorganic salt, an aliphatic organic acid, an aromatic diacid, and an aromatic monoacid.
    Type: Application
    Filed: January 7, 2010
    Publication date: June 3, 2010
    Applicant: Medtronic, Inc.
    Inventors: Donald R. Merritt, Craig L. Schmidt
  • Publication number: 20100076523
    Abstract: A medical device includes a rechargeable lithium-ion battery for providing power to the medical device. The lithium-ion battery includes a positive electrode including a current collector and a first active material, a negative electrode including a current collector and a second active material, and an auxiliary electrode including a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 25, 2010
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7682745
    Abstract: A medical device includes a rechargeable lithium-ion battery for providing power to the medical device. The lithium-ion battery includes a positive electrode comprising a current collector and an active material comprising a material selected from the group consisting of LiCoO2, LiMn2O4, LiNixCoyNi(1?x?y)O2, LiAlxCoyNi(1?x?y)O2, LiTixCoyNi(1?x?y)O2, and combinations thereof. The lithium-ion battery also includes a negative electrode having a current collector and an active material including a lithium titanate material. The current collector of the negative electrode includes a material selected from the group consisting of aluminum, titanium, and silver. The battery is configured for cycling to near-zero-voltage conditions without a substantial loss of battery capacity.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 23, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7662509
    Abstract: A battery includes a positive electrode having a current collector and a first active material and a negative electrode having a current collector and a second active material. The battery also includes an auxiliary electrode having a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 16, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7657315
    Abstract: An implantable medical device includes a control circuit for controlling the operation of the device and for obtaining physiological data from a patient in which the medical device is implanted. The implanted device also includes a communication circuit for transmitting the physiological data to an external device. A first power source is coupled to the control circuit and provides power to the control circuit. A second power source is coupled to the communication circuit and provides power to the communication circuit.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: February 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Craig L. Schmidt, Paul M. Skarstad
  • Publication number: 20100015528
    Abstract: A battery includes a positive electrode having a current collector and a first active material and a negative electrode having a current collector and a second active material. The battery also includes an auxiliary electrode having a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Application
    Filed: September 25, 2009
    Publication date: January 21, 2010
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20100009245
    Abstract: A battery includes a positive electrode having a current collector and a first active material and a negative electrode having a current collector and a second active material. The battery also includes an auxiliary electrode having a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Application
    Filed: July 29, 2009
    Publication date: January 14, 2010
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7641992
    Abstract: A medical device includes a rechargeable lithium-ion battery for providing power to the medical device. The lithium-ion battery includes a positive electrode including a current collector and a first active material, a negative electrode including a current collector and a second active material, and an auxiliary electrode including a current collector and a third active material. The auxiliary electrode is configured for selective electrical connection to one of the positive electrode and the negative electrode. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 5, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7642013
    Abstract: A medical device includes a rechargeable lithium-ion battery for providing power to the medical device. The lithium-ion battery includes a positive electrode including a current collector, a first active material, and a second active material. The lithium-ion battery also includes a negative electrode including a current collector, a third active material, and a quantity of lithium in electrical contact with the current collector of the negative electrode. The second active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 5, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7635541
    Abstract: A method for charging an implantable medical device includes charging a lithium-ion battery provided in a medical device, the lithium-ion battery having a negative electrode with a lithium titanate active material. For at least a portion of the charging, the potential of the negative electrode is more than approximately 70 millivolts below the equilibrium potential of the negative electrode.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: December 22, 2009
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, William G. Howard, Craig L. Schmidt
  • Publication number: 20090286158
    Abstract: A lithium-ion battery includes a positive electrode that includes a positive current collector, a first active material, and a second active material. The lithium-ion battery also includes a negative electrode comprising a negative current collector, a third active material, and a quantity of lithium in electrical contact with the negative current collector. The first active material, second active material, and third active materials are configured to allow doping and undoping of lithium ions, and the second active material exhibits charging and discharging capacity below a corrosion potential of the negative current collector and above a decomposition potential of the first active material.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20090286151
    Abstract: A lithium-ion battery includes a positive electrode having an active material and a polymeric separator configured to allow electrolyte and lithium ions to flow between a first side of the separator and an opposite second side of the separator. The battery also includes a liquid electrolyte having a lithium salt dissolved in at least one non-aqueous solvent and a negative electrode having a lithium titanate active material. The positive electrode has a first capacity and the negative electrode has a second capacity that is less than the first capacity.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 19, 2009
    Inventors: Erik R. Scott, William G. Howard, Craig L. Schmidt
  • Patent number: 7616995
    Abstract: Implantable medical device adapted to provide a therapeutic output to a patient. A therapy module, operatively coupled to a battery, is adapted to provide the therapeutic output. A control circuit provides an action indicative of recharging the battery when the voltage of the battery reaches a recharge voltage wherein the recharge voltage is varied as the battery ages. Also a method of providing a therapeutic output to a patient using an implantable medical device having a battery having a voltage. An action indicative of recharging the battery is provided when the voltage of the battery reaches a recharge voltage. The recharge voltage is varied as the battery ages.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: November 10, 2009
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Robert M. Skime, Erik R. Scott, Craig L. Schmidt
  • Patent number: 7582387
    Abstract: A lithium-ion battery includes a positive electrode that includes a positive current collector, a first active material, and a second active material. The lithium-ion battery also includes a negative electrode comprising a negative current collector, a third active material, and a quantity of lithium in electrical contact with the negative current collector. The first active material, second active material, and third active materials are configured to allow doping and undoping of lithium ions, and the second active material exhibits charging and discharging capacity below a corrosion potential of the negative current collector and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 1, 2009
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20090208845
    Abstract: A lithium-ion battery includes a positive electrode that has a current collector and a first active material and a negative electrode that has a current collector, a second active material, and a third active material. The second active material includes a lithium titanate material and the third active material is a material that can be one or more of the following: LiMn2O4, LixVO2 where x is between 0.05 and 0.4, LiMxMn(2-x)O4 where M is a metal and x is less than or equal to 1, V6O13, V2O5, V3O8, MoO3, TiS2, WO2, MoO2, RuO2, and combinations thereof. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Application
    Filed: April 23, 2009
    Publication date: August 20, 2009
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott