Patents by Inventor Craig L. Wiklund

Craig L. Wiklund has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210045260
    Abstract: Various embodiments of a sealed package and method of forming such package are disclosed. The package can include a housing having an inner surface and an outer surface, and a substrate having a first major surface and a second major surface. The package can also include an electronic device disposed on the first major surface of the substrate, and a power source disposed at least partially within the housing. The substrate can be sealed to the housing such that a non-bonded electrical connection is formed between a device contact of the electronic device and a power source contact of the power source.
    Type: Application
    Filed: September 6, 2020
    Publication date: February 11, 2021
    Inventors: John K. Day, Michael J. Nidelkoff, Kris A. Peterson, Andrew J. Ries, David A. Ruben, Craig L. Wiklund
  • Patent number: 10772228
    Abstract: Various embodiments of a sealed package and method of forming such package are disclosed. The package can include a housing having an inner surface and an outer surface, and a substrate having a first major surface and a second major surface. The package can also include an electronic device disposed on the first major surface of the substrate, and a power source disposed at least partially within the housing. The substrate can be sealed to the housing such that a non-bonded electrical connection is formed between a device contact of the electronic device and a power source contact of the power source.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: John K Day, Michael J Nidelkoff, Kris A Peterson, Andrew J Ries, David A Ruben, Craig L Wiklund
  • Publication number: 20170127543
    Abstract: Various embodiments of a sealed package and method of forming such package are disclosed. The package can include a housing having an inner surface and an outer surface, and a substrate having a first major surface and a second major surface. The package can also include an electronic device disposed on the first major surface of the substrate, and a power source disposed at least partially within the housing. The substrate can be sealed to the housing such that a non-bonded electrical connection is formed between a device contact of the electronic device and a power source contact of the power source.
    Type: Application
    Filed: October 21, 2016
    Publication date: May 4, 2017
    Inventors: John K. Day, Michael J. Nidelkoff, Kris A. Peterson, Andrew J. Ries, David A. Ruben, Craig L. Wiklund
  • Patent number: 7383734
    Abstract: A mechanical response of an implantable medical device (IMD) to a first static magnetic field and a first gradient magnetic field slew rate is simulated by exposing the IMD to a second static magnetic field having a magnitude greater than the first static magnetic field and generating a second gradient magnetic field at the IMD such that a product of the second static magnetic field and a second gradient magnetic field slew rate is substantially equal to a product of the first static magnetic field and the first gradient magnetic field slew rate.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: June 10, 2008
    Assignee: Medtronic, Inc.
    Inventors: Kateri A. Garcia, Robert Hiller, Troy A. Jenison, Bijoyendra Nath, James D. Neville, Craig L. Wiklund
  • Patent number: 7231253
    Abstract: An implantable medical device (IMD) includes a connector header for making electrical and mechanical connections with a proximal connector assembly of an electrical medical lead and includes a retainer for retaining a penetrable grommet within a header grommet aperture. A connector block disposed within a header body of the connector header has a threaded bore aligned with a header grommet aperture and a connector block bore aligned with a header connector bore. The penetrable grommet is disposed within the header grommet aperture, and a setscrew is threaded into the threaded bore having a setscrew socket disposed to be engaged by a tool inserted through the penetrable grommet within the header grommet aperture to enable rotation of the setscrew within the threaded bore to tighten the setscrew against or to loosen the setscrew from a lead connector element received in the header connector bore.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 12, 2007
    Assignee: Medtronic, Inc.
    Inventors: Kevin K. Tidemand, Daniel C. Haeg, Craig L. Wiklund, James F. Kelley, Jennifer J. Zhao, Andrew J. Ries, David C. Rice, Hui J. Jin, James J. Christenson, Loc Van Vo
  • Patent number: 7187974
    Abstract: The present invention generally relates to an improved implantable medical device (IMD) and more particularly to an ultrasonically weld perforated lid for an IMD to form a hermetic seal between the IMD and the perforated lid. Appropriately configured perforated lids retain one or more components within a cavity or port formed in a part of an IMD. Such lids preferably secure a pierceable resilient grommet, septum or other resilient member in a cavity or port. When an adjustment instrument, a pull tool or a syringe is temporarily inserted therethrough and later extracted, the resilient member heals (i.e., seals and/or reseals). Preferably, the resilient member abuts a mechanical stop and is compressed slightly during assembly and ultrasonic welding of the lid. The resilient member preferably has a lateral dimension like the cavity or port so that when the lid compresses the resilient member it expands slightly and contacts the interior cavity surfaces thus improving the seal.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: March 6, 2007
    Assignee: Medtronic, Inc.
    Inventors: Daniel C. Haeg, Craig L. Wiklund, James F. Kelley
  • Publication number: 20040122481
    Abstract: Improvements in connector headers of implantable medical devices (IMDs) for making electrical and mechanical connections with a connector element of a proximal connector assembly of an electrical medical lead and components thereof are disclosed. A connector block disposed within a header body of the connector header has a threaded bore aligned with a header grommet aperture and a connector block bore aligned with a header connector bore. A penetrable grommet is disposed within the header grommet aperture, and a setscrew is threaded into the threaded bore having a setscrew socket disposed to be engaged by the tool inserted through the penetrable grommet within the header grommet aperture to enable rotation of the setscrew within the threaded bore to tighten the setscrew against or to loosen the setscrew from a lead connector element received in the header connector bore.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 24, 2004
    Inventors: Kevin K. Tidemand, Daniel C. Haeg, Craig L. Wiklund, James F. Kelley, Jennifer J. Zhao, Andrew J. Ries, David C. Rice, Hui J. Jin, James J. Christenson, Loc Van Vo
  • Patent number: 6660116
    Abstract: A capacitive filtered feedthrough assembly is formed in a solid state manner to employ highly miniaturized conductive paths each filtered by a discoid capacitive filter embedded in a capacitive filter array. A non-conductive, co-fired metal-ceramic substrate is formed from multiple layers that supports one or a plurality of substrate conductive paths and it is brazed to a conductive ferrule, adapted to be welded to a case, using a conductive, corrosion resistant braze material. The metal-ceramic substrate is attached to an internally disposed capacitive filter array that encloses one or a plurality of capacitive filter capacitor active electrodes each coupled to a filter array conductive path and at least one capacitor ground electrode. Each capacitive filter array conductive path is joined with a metal-ceramic conductive path to form a feedthrough conductive path.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: December 9, 2003
    Assignee: Medtronic, Inc.
    Inventors: William D. Wolf, James Strom, Craig L. Wiklund, Mary A. Fraley, Lynn M. Seifried, James E. Volmering, Patrick F. Malone, Samuel F. Haq
  • Publication number: 20030040780
    Abstract: The present invention generally relates to an improved implantable medical device (IMD) and more particularly to an ultrasonically weld perforated lid for an IMD to form a hermetic seal between the IMD and the perforated lid. Appropriately configured perforated lids retain one or more components within a cavity or port formed in a part of an IMD. Such lids preferably secure a pierceable resilient grommet, septum or other resilient member in a cavity or port. When an adjustment instrument, a pull tool or a syringe is temporarily inserted therethrough and later extracted, the resilient member heals (i.e., seals and/or reseals). Preferably, the resilient member abuts a mechanical stop and is compressed slightly during assembly and ultrasonic welding of the lid. The resilient member preferably has a lateral dimension like the cavity or port so that when the lid compresses the resilient member it expands slightly and contacts the interior cavity surfaces thus improving the seal.
    Type: Application
    Filed: July 19, 2002
    Publication date: February 27, 2003
    Applicant: Medtronic, Inc.
    Inventors: Daniel C. Haeg, Craig L. Wiklund, James F. Kelley
  • Publication number: 20020166618
    Abstract: A capacitive filtered feedthrough assembly is formed in a solid state manner to employ highly miniaturized conductive paths each filtered by a discoid capacitive filter embedded in a capacitive filter array. A non-conductive, co-fired metal-ceramic substrate is formed from multiple layers that supports one or a plurality of substrate conductive paths and it is brazed to a conductive ferrule, adapted to be welded to a case, using a conductive, corrosion resistant braze material. The metal-ceramic substrate is attached to an internally disposed capacitive filter array that encloses one or a plurality of capacitive filter capacitor active electrodes each coupled to a filter array conductive path and at least one capacitor ground electrode. Each capacitive filter array conductive path is joined with a metal-ceramic conductive path to form a feedthrough conductive path.
    Type: Application
    Filed: April 18, 2002
    Publication date: November 14, 2002
    Applicant: Medtronic, Inc.
    Inventors: William D. Wolf, James Strom, Craig L. Wiklund, Mary A. Fraley, Lynn M. Seifried, James E. Volmering, Patrick F. Malone, Samuel F. Haq
  • Patent number: 6414835
    Abstract: A capacitive filtered feedthrough assembly is formed in a solid state manner to employ highly miniaturized conductive paths each filtered by a discoid capacitive filter embedded in a capacitive filter array. A non-conductive, co-fired metal-ceramic substrate is formed from multiple layers that supports one or a plurality of substrate conductive paths and it is brazed to a conductive ferrule, adapted to be welded to a case, using a conductive, corrosion resistant braze material. The metal-ceramic substrate is attached to an internally disposed capacitive filter array that encloses one or a plurality of capacitive filter capacitor active electrodes each coupled to a filter array conductive path and at least one capacitor ground electrode. Each capacitive filter array conductive path is joined with a metal-ceramic conductive path to form a feedthrough conductive path.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: July 2, 2002
    Assignee: Medtronic, Inc.
    Inventors: William D. Wolf, James Strom, Craig L. Wiklund, Mary A. Fraley, Lynn M. Seifried, James E. Volmering, Patrick F. Malone, Samuel F. Haq
  • Publication number: 20010034543
    Abstract: The present invention generally relates to implantable medical devices and more particularly to various means for ultrasonically welding, swaging or staking various components in an implantable medical device, most preferably by employing appropriately configured covers or lids. Covers or lids are attached to header or connector modules mounted on an hermetically enclosed and sealed enclosure, where the connector or header module and enclosure comprise an implantable medical device. The covers or lids preferably trap or otherwise secure any of a number of various connector or header module components within the header or connector modules. Examples of such trapped or secured components include grommets, set screw connector blocks, seals, feedthrough wires, multi-beam contacts, electrical contacts, antennas, radio-opaque markers, connector ribbons and the like.
    Type: Application
    Filed: January 23, 2001
    Publication date: October 25, 2001
    Inventors: Daniel C. Haeg, Craig L. Wiklund, James F. Kelley
  • Patent number: 6205358
    Abstract: The present invention generally relates to implantable medical devices and more particularly to various means for ultrasonically welding, swaging or staking various components in an implantable medical device, most preferably by employing appropriately configured covers or lids. Covers or lids are attached to header or connector modules mounted on an hermetically enclosed and sealed enclosure, where the connector or header module and enclosure comprise an implantable medical device. The covers or lids preferably trap or otherwise secure any of a number of various connector or header module components within the header or connector modules. Examples of such trapped or secured components include grommets, set screw connector blocks, seals, feedthrough wires, multi-beam contacts, electrical contacts, antennas, radio-opaque markers, connector ribbons and the like.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: March 20, 2001
    Assignee: Medtronic, Inc.
    Inventors: Daniel C. Haeg, Craig L. Wiklund, James F. Kelley
  • Patent number: 5919215
    Abstract: A method and apparatus for attaching a pre-formed header module, e.g. a connector header module or an electrode bearing header module, etc., to a hermetically sealed enclosure of the implantable medical device, typically including electronic integrated circuits, batteries, electromechanical pumps, or the like, are disclosed. A plurality of upstanding tabs that are fixed to the hermetically sealed enclosure, e.g. to the enclosure attachment surface, extend into a like plurality of tab channels formed in the header module housing. The upstanding tab(s) are inserted into the respective tab channel(s) during seating of the module and enclosure attachment surfaces and effects an initial alignment of the header module with the hermetically sealed enclosure.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: July 6, 1999
    Assignee: Medtronic, Inc.
    Inventors: Craig L. Wiklund, Daniel C. Haeg, James F. Kelley
  • Patent number: 5897578
    Abstract: A method and apparatus for attaching a pre-formed header module, e.g. a connector header module or an electrode bearing header module, etc., to a hermetically sealed enclosure of the implantable medical device, typically including electronic integrated circuits, batteries, electromechanical pumps, or the like, are disclosed. A plurality of upstanding tabs that are fixed to the hermetically sealed enclosure, e.g. to the enclosure attachment surface, extend into a like plurality of tab channels formed in the header module housing. The upstanding tab(s) are inserted into the respective tab channel(s) during seating of the module and enclosure attachment surfaces and effects an initial alignment of the header module with the hermetically sealed enclosure.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: April 27, 1999
    Assignee: Medtronic, Inc.
    Inventors: Craig L. Wiklund, Daniel C. Haeg, James F. Kelley
  • Patent number: 5871514
    Abstract: A method and apparatus for attaching a pre-formed header module to a hermetically sealed enclosure of an implantable medical device are described. A plurality of upstanding tabs attached to the hermetically sealed enclosure extend into a plurality of corresponding tab channels formed in the header module. The upstanding tabs are inserted into the respective tab channels during seating of the module and enclosure attachment surfaces and effect an initial alignment of the header module with the hermetically sealed enclosure. Each attachment tab has a retention feature such as a recess formed on or in the tab that is designed to receive molten thermoplastic material when ultrasonic energy is applied in the region of the tab channel.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: February 16, 1999
    Assignee: Medtronic, Inc.
    Inventors: Craig L. Wiklund, Daniel C. Haeg, James F. Kelley
  • Patent number: 5871515
    Abstract: A method and apparatus for attaching a pre-formed header module, e.g. a connector header module or an electrode bearing header module, etc., to a hermetically sealed enclosure of the implantable medical device, typically including electronic integrated circuits, batteries, electromechanical pumps, or the like, are disclosed. A plurality of upstanding tabs that are fixed to the hermetically sealed enclosure, e.g. to the enclosure attachment surface, extend into a like plurality of tab channels formed in the header module housing. The upstanding tab(s) are inserted into the respective tab channel(s) during seating of the module and enclosure attachment surfaces and effects an initial alignment of the header module with the hermetically sealed enclosure.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: February 16, 1999
    Assignee: Medtronic, Inc.
    Inventors: Craig L. Wiklund, Daniel C. Haeg, James F. Kelley
  • Patent number: 5870272
    Abstract: A capacitive filter feedthrough assembly and method of making the same are disclosed for shielding an implantable medical device such as pacemaker or defibrillator from electromagnetic interference or noise. A ferrule is adapted for mounting onto a conductive device housing by welding, soldering, brazing or gluing, and supports a terminal pin for feedthrough passage to a housing interior. A capacitive filter is mounted at the inboard side of a device housing, with capacitive filter electrode plate sets coupled respectively to the housing and the terminal pin by an electrically conductive combination of solder and brazing. In one embodiment of the invention, multiple capacitive filters are provided in an array within a common base structure, where each capacitive filter is associated with a respective terminal pin.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: February 9, 1999
    Assignee: Medtronic Inc.
    Inventors: Lynn M. Seifried, Joseph F. Lessar, William D. Wolf, Mary A. Fraley, Kevin K. Tidemand, David B. Engmark, Ronald F. Hoch, Craig L. Wiklund
  • Patent number: 5782891
    Abstract: An implantable medical device with a ceramic enclosure has a novel multi-layered ceramic feedthrough substrate in place of a prior art glass-to-metal feedthrough substrate, leading to lower costs and a higher feedthrough density. Use in a metal enclosure is also disclosed.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: July 21, 1998
    Assignee: Medtronic, Inc.
    Inventors: Beth Anne Hassler, Adriannus P. Donders, Craig L. Wiklund, Daniel A. Lyons
  • Patent number: 5535097
    Abstract: An implantable medical device including a hermetic housing containing an electronic circuit, such as a cardiac pacemaker. The electronic circuit may be coupled to a medical lead by means of a connector module which is formed as part of a molded, resilient shroud, extending around the circumference of the hermetic container.
    Type: Grant
    Filed: November 23, 1993
    Date of Patent: July 9, 1996
    Assignee: Medtronic, Inc.
    Inventors: David A. Ruben, Jeffrey L. Galvin, Bill R. Simmons, Lourdes O. Kline, Lynn M. Seifried, Craig L. Wiklund, John E. Nicholson, Thomas M. Nutzman