Patents by Inventor Craig Leidholm

Craig Leidholm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070169813
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 26, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Matthew Robinson, Jeroen Van Duren, Craig Leidholm
  • Publication number: 20070169812
    Abstract: Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 26, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Matthew Robinson, Jeroen Van Duren, Craig Leidholm
  • Publication number: 20070169809
    Abstract: A high-throughput method of forming a semiconductor precursor layer by use of low-melting chalcogenides is disclosed. In one embodiment, a method is provided that comprises of forming a precursor material comprising group IB-chalcogenide and/or group IIIA-chalcogenide particles, wherein amounts of the group IB or IIIA element and amounts of chalcogen in the particles are selected to be at a desired stoichiometric ratio for the group IB or IIIA chalcogenide that provides a melting temperature less than a highest melting temperature found on a phase diagram for any stoichiometric ratio of elements for the group IB or IIIA chalcogenide. The method includes disposing the particle precursor material over a surface of a substrate and heating the particle precursor material to a temperature sufficient to react the particles to form a film of a group IB-IIIA-chalcogenide compound. The method may include at least partially melting the particles.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 26, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Jeroen Van Duren, Matthew Robinson, Craig Leidholm
  • Publication number: 20070169810
    Abstract: A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-containing vapor is disclosed. In one embodiment, the method comprises forming a precursor material comprising group IB and/or group IIIA particles of any shape. The method may include forming a precursor layer of the precursor material over a surface of a substrate. The method may further include heating the particle precursor material in a substantially oxygen-free chalcogen atmosphere to a processing temperature sufficient to react the particles and to release chalcogen from the chalcogenide particles, wherein the chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form a group IB-IIIA-chalcogenide film at a desired stoichiometric ratio. The chalcogen atmosphere may provide a partial pressure greater than or equal to the vapor pressure of liquid chalcogen in the precursor layer at the processing temperature.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 26, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Jeroen Van Duren, Matthew Robinson, Craig Leidholm
  • Publication number: 20070163383
    Abstract: Materials and devices are provided for high-throughput printing of nanostructured semiconductor precursor layer. In one embodiment, a material is provided that comprises of a plurality of microflakes having a material composition containing at least one element from Groups IB, IIIA, and/or VIA. The microflakes may be created by milling precursor particles characterized by a precursor composition that provides sufficient malleability to form a planar shape from a non-planar starting shape when milled, and wherein overall amounts of elements from Groups IB, IIIA and/or VIA contained in the precursor particles combined are at a desired stoichiometric ratio of the elements. It should also be understood that other flakes such as but not limited to nanoflakes may also be used to form the precursor material.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 19, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Jeroen Van Duren, Matthew Robinson, Craig Leidholm
  • Publication number: 20070163639
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 19, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Matthew Robinson, Jeroen Van Duren, Craig Leidholm
  • Publication number: 20070163637
    Abstract: Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 19, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Matthew Robinson, Jeroen Van Duren, Craig Leidholm
  • Publication number: 20070163638
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, a solar cell is provided that comprises of a substrate, a back electrode formed over the substrate, a p-type semiconductor thin film formed over the back electrode, an n-type semiconductor thin film formed so as to constitute a pn junction with the p-type semiconductor thin film, and a transparent electrode formed over the n-type semiconductor thin film. The p-type semiconductor thin film results by processing a dense film formed from a plurality of microflakes having a material composition containing at least one element from Groups IB, IIIA, and/or VIA, wherein the dense film has a void volume of about 26% or less. The dense film may be a substantially void free film.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 19, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Jeroen Van Duren, Matthew Robinson, Craig Leidholm
  • Publication number: 20070166453
    Abstract: Methods and devices for high-throughput printing of a precursor material for forming a film of a group IB-IIIA-chalcogenide compound are disclosed. In one embodiment, the method comprises forming a precursor layer on a substrate, wherein the precursor layer comprises one or more discrete layers. The layers may include at least a first layer containing one or more group IB elements and two or more different group IIIA elements and at least a second layer containing elemental chalcogen particles. The precursor layer may be heated to a temperature sufficient to melt the chalcogen particles and to react the chalcogen particles with the one or more group IB elements and group IIIA elements in the precursor layer to form a film of a group IB-IIIA-chalcogenide compound.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 19, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Jeroen Van Duren, Matthew Robinson, Craig Leidholm
  • Publication number: 20070163640
    Abstract: A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-rich chalcogenides is disclosed. The method comprises forming a precursor material comprising group IB-chalcogenide and/or group IIIA-chalcogenide particles, wherein an overall amount of chalcogen in the particles relative to an overall amount of chalcogen in a group IB-IIIA-chalcogenide film created from the precursor material, is at a ratio that provides an excess amount of chalcogen in the precursor material. The excess amount of chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form the group IB-IIIA-chalcogenide film at a desired stoichiometric ratio, wherein the excess amount of chalcogen in the precursor material is an amount greater than or equal to a stoichiometric amount found in the IB-IIIA-chalcogenide film.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 19, 2007
    Applicant: Nanosolar, Inc.
    Inventors: Jeroen Van Duren, Matthew Robinson, Craig Leidholm
  • Publication number: 20070000537
    Abstract: Methods and devices are provided for absorber layers formed on foil substrate. In one embodiment, a method of manufacturing photovoltaic devices may be comprised of providing a substrate comprising of at least one electrically conductive aluminum foil substrate, at least one electrically conductive diffusion barrier layer, and at least one electrically conductive electrode layer above the diffusion barrier layer. The diffusion barrier layer may prevent chemical interaction between the aluminum foil substrate and the electrode layer. An absorber layer may be formed on the substrate. In one embodiment, the absorber layer may be a non-silicon absorber layer. In another embodiment, the absorber layer may be an amorphous silicon (doped or undoped) absorber layer. Optionally, the absorber layer may be based on organic and/or inorganic materials.
    Type: Application
    Filed: June 28, 2006
    Publication date: January 4, 2007
    Inventors: Craig Leidholm, Brent Bollman, James Sheats, Sam Kao, Martin Roscheisen
  • Publication number: 20060060237
    Abstract: An absorber layer of a photovoltaic device may be formed on an aluminum or metallized polymer foil substrate. A nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA is formed on the substrate. The nascent absorber layer and/or substrate is then rapidly heated from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. and maintained in the average plateau temperature range 2 to 30 minutes after which the temperature is reduced.
    Type: Application
    Filed: September 18, 2004
    Publication date: March 23, 2006
    Applicant: Nanosolar, Inc.
    Inventors: Craig Leidholm, Brent Bollman
  • Publication number: 20050186342
    Abstract: An absorber layer may be formed on on a substrate using atomic layer deposition reactions. An absorber layer containing elements of groups IB, IIIA and VIB may be formed by placing a substrate in a treatment chamber and performing atomic layer deposition of a group IB element and/or one or more group IIIA elements from separate sources onto a substrate to form a film. A group VIA element is then incorporated into the film and annealed to form the absorber layer. The absorber layer may be greater than about 25 nm thick. The substrate may be coiled into one or more coils in such a way that adjacent turns of the coils do not touch one another. The coiled substrate may be placed in a treatment chamber where substantially an entire surface of the one or more coiled substrates may be treated by an atomic layer deposition process.
    Type: Application
    Filed: September 18, 2004
    Publication date: August 25, 2005
    Applicant: Nanosolar, Inc.
    Inventors: Brian Sager, Martin Roscheisen, Craig Leidholm