Patents by Inventor Craig M. Lawrence

Craig M. Lawrence has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7878128
    Abstract: A system includes a board having opposing surfaces and at least one leg connected to one surface of the board through a first pivotable fitting to allow the board and the leg to move between a first position wherein the board and the leg are substantially parallel and a second position wherein the board and the leg are substantially perpendicular. The system also includes a locking mechanism secured to the board through a second pivotable fitting at a first end and configured to rotate at a second end opposite the first end between a storage position extending parallel with the board and a work position extending perpendicular to the board.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: February 1, 2011
    Assignee: Steelcase Development Corporation
    Inventors: Ronnie K. Watson, Robert L. Stewart, Lopa Patel, Jennifer Ellen Davis-Wilson, Craig M. Lawrence, Steven Bishop, Emily Ma, James Yurchenco, Christian Cornelius, Phillip Stob
  • Patent number: 7797765
    Abstract: An eyewear system includes a frame having a lens channel configured to slidably receive the lens and an opening to allow the lens to be inserted into the lens channel. The system further includes a lens configured to be slidably received into the lens channel of the frame and a latch to releasably secure the lens in the frame.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: September 21, 2010
    Assignee: Bell Sports, Inc.
    Inventors: Michael J. Musal, Craig M. Lawrence, Aaron A. Henningsgaard, Eamon Briggs
  • Patent number: 6955650
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes, a flow pathway, and a hygiene barrier positioned to block a predetermined pathogen from the exhaled gases. The indirect calorimeter also includes a flow pathway having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The flow pathway includes a flow tube through which the inhaled and exhaled gases pass, an outer housing surrounding the flow tube, and a chamber disposed between the flow tube and the first end.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: October 18, 2005
    Assignee: HealtheTech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Patent number: 6899684
    Abstract: A method of determining a respiratory parameter for a subject using an indirect calorimeter is provided. The indirect calorimeter includes a respiratory connector for passing inhaled and exhaled gases, a flow pathway operable to receive and pass inhaled and exhaled gases having a flow tube within the flow pathway through which the inhaled and exhaled gases pass, a flow meter for determining an instantaneous flow volume of the inhaled and exhaled gases, a component gas concentration sensor for determining an instantaneous fraction of a predetermined component gas and a computation unit having a processor and a memory. The method includes the steps of initializing the indirect calorimeter and the subject breathing into the respiratory connector if the indirect calorimeter is initialized, sensing the flow volume of the inhaled and exhaled gases passing through the flow pathway using the flow meter and transmitting a signal representing the sensed flow volume to the computation unit.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: May 31, 2005
    Assignee: HealtheTech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Patent number: 6899683
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a disposable portion and a reusable portion. The disposable portion includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. The disposable portion also includes a flow pathway operable to receive and pass inhaled and exhaled gases, having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The disposable portion is disposed within the reusable portion, which includes a flow meter, a component gas concentration sensor, and a computation unit. The flow meter generates a signal as a function of the instantaneous flow volume of respiratory gases passing through the flow pathway and the component gas concentration sensor generates a signal as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 31, 2005
    Assignee: Healthetech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Publication number: 20030065273
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes, a flow pathway, and a hygiene barrier positioned to block a predetermined pathogen from the exhaled gases. The indirect calorimeter also includes a flow pathway having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The flow pathway includes a flow tube through which the inhaled and exhaled gases pass, an outer housing surrounding the flow tube, and a chamber disposed between the flow tube and the first end.
    Type: Application
    Filed: May 31, 2002
    Publication date: April 3, 2003
    Inventors: James R. Mault, Edwin M. Pearce, Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Publication number: 20030065274
    Abstract: A method of determining a respiratory parameter for a subject using an indirect calorimeter is provided. The indirect calorimeter includes a respiratory connector for passing inhaled and exhaled gases, a flow pathway operable to receive and pass inhaled and exhaled gases having a flow tube within the flow pathway through which the inhaled and exhaled gases pass, a flow meter for determining an instantaneous flow volume of the inhaled and exhaled gases, a component gas concentration sensor for determining an instantaneous fraction of a predetermined component gas and a computation unit having a processor and a memory. The method includes the steps of initializing the indirect calorimeter and the subject breathing into the respiratory connector if the indirect calorimeter is initialized, sensing the flow volume of the inhaled and exhaled gases passing through the flow pathway using the flow meter and transmitting a signal representing the sensed flow volume to the computation unit.
    Type: Application
    Filed: June 10, 2002
    Publication date: April 3, 2003
    Inventors: James R. Mault, Edwin M. Pearce, Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Publication number: 20030065275
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a disposable portion and a reusable portion. The disposable portion includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. The disposable portion also includes a flow pathway operable to receive and pass inhaled and exhaled gases, having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The disposable portion is disposed within the reusable portion, which includes a flow meter, a temperature sensing means, a humidity sensing means, a pressure sensing means, a component gas concentration sensor, and a computation unit.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 3, 2003
    Inventors: James R. Mault, Edwin M. Pearce, Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Publication number: 20030028120
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a disposable portion and a reusable portion. The disposable portion includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. The disposable portion also includes a flow pathway operable to receive and pass inhaled and exhaled gases, having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The disposable portion is disposed within the reusable portion, which includes a flow meter, a component gas concentration sensor, and a computation unit. The flow meter generates a signal as a function of the instantaneous flow volume of respiratory gases passing through the flow pathway and the component gas concentration sensor generates a signal as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases.
    Type: Application
    Filed: May 31, 2002
    Publication date: February 6, 2003
    Inventors: James R. Mault, Edwin M. Pearce, Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Publication number: 20030023182
    Abstract: An improved respiratory connector for use with a respiratory analyzer is provided. The respiratory connector includes a housing configured to be supported in contact with the subject, a flow pathway within the housing for passing the inhaled and exhaled gases therethrough and a connector port extending from the housing for connecting the respiratory connector to the respiratory analyzer. The respiratory connector also includes a usage indicating means within the housing for indicating usage of the respiratory connector to the subject. The respiratory analyzer includes a flow pathway operable to receive and pass inhaled and exhaled gases. A first end of the flow pathway is in fluid communication with the respiratory connector and a second end is in fluid communication with a source and sink for respiratory gases. A flow meter generates electrical signals as a function of the instantaneous flow volume of inhaled and exhaled gases passing through the flow pathway.
    Type: Application
    Filed: July 25, 2002
    Publication date: January 30, 2003
    Inventors: James R. Mault, Edwin M. Pearce, Theodore W. Barber, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason, Craig M. Lawrence
  • Patent number: 6468222
    Abstract: The present invention provides an indirect calorimeter for measuring the metabolic rate of a subject. The calorimeter includes a respiratory calorimeter configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. A flow pathway is operable to receive and pass inhaled and exhaled gases. A first end of the flow pathway is in fluid communication with the respiratory connector and a second end is in fluid communication with a source and sink for respiratory gases. A flow meter generates electrical signals as a function of the instantaneous flow volume of inhaled and exhaled gases passing through the flow pathway. A component gas concentration sensor generates electrical signals as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases as the gases pass through the flow pathway.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: October 22, 2002
    Assignee: HealtheTech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason