Patents by Inventor Craig MacNaughton

Craig MacNaughton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10545412
    Abstract: A method to collect data and train, validate and deploy statistical models to predict overlay errors using patterned wafer geometry data and other relevant information includes selecting a training wafer set, measuring at multiple lithography steps and calculating geometry differences, applying a plurality of predictive models to the training wafer geometry differences and comparing predicted overlay to the measured overlay on the training wafer set. The most accurate predictive model is identified and the results fed-forward to the lithography scanner tool which can correct for these effects and reduce overlay errors during the wafer scan-and-expose processes.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: January 28, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Wei Chang, Krishna Rao, Joseph Gutierrez, Ramon Olavarria, Craig MacNaughton, Amir Azordegan, Prasanna Dighe
  • Publication number: 20170017162
    Abstract: A method to collect data and train, validate and deploy statistical models to predict overlay errors using patterned wafer geometry data and other relevant information includes selecting a training wafer set, measuring at multiple lithography steps and calculating geometry differences, applying a plurality of predictive models to the training wafer geometry differences and comparing predicted overlay to the measured overlay on the training wafer set. The most accurate predictive model is identified and the results fed-forward to the lithography scanner tool which can correct for these effects and reduce overlay errors during the wafer scan-and-expose processes.
    Type: Application
    Filed: March 5, 2015
    Publication date: January 19, 2017
    Applicant: KLA-Tenor Corporation
    Inventors: Wei Chang, Krishna Rao, Joseph Gutierrez, Ramon Olavarria, Craig MacNaughton, Amir Azordegan, Prasanna Dighe
  • Patent number: 9518932
    Abstract: Methods and systems for determining one or more parameters of a wafer inspection process are provided. One method includes acquiring metrology data for a wafer generated by a wafer metrology system. The method also includes determining one or more parameters of a wafer inspection process for the wafer or another wafer based on the metrology data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: December 13, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Allen Park, Craig MacNaughton, Ellis Chang
  • Patent number: 9513565
    Abstract: Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: December 6, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Craig MacNaughton, Sathish Veeraraghavan, Pradeep Vukkadala, Jaydeep Sinha, Amir Azordegan
  • Patent number: 9373165
    Abstract: Methods and systems enabling ultra-high resolution topography measurements of patterned wafers are disclosed. Measurements obtained utilizing the ultra-high resolution metrology may be utilized to improve wafer metrology measurement accuracies. Additionally, measurements obtained utilizing the ultra-high resolution metrology may also be utilized to provide feedback and/or calibration control to improve fabrication and design of wafers.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: June 21, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Amir Azordegan, Pradeep Vukkadala, Craig MacNaughton, Jaydeep Sinha
  • Publication number: 20160071260
    Abstract: Methods and systems enabling ultra-high resolution topography measurements of patterned wafers are disclosed. Measurements obtained utilizing the ultra-high resolution metrology may be utilized to improve wafer metrology measurement accuracies. Additionally, measurements obtained utilizing the ultra-high resolution metrology may also be utilized to provide feedback and/or calibration control to improve fabrication and design of wafers.
    Type: Application
    Filed: October 22, 2014
    Publication date: March 10, 2016
    Inventors: Amir Azordegan, Pradeep Vukkadala, Craig MacNaughton, Jaydeep Sinha
  • Publication number: 20150212429
    Abstract: Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
    Type: Application
    Filed: April 10, 2015
    Publication date: July 30, 2015
    Inventors: Craig MacNaughton, Sathish Veeraraghavan, Pradeep Vukkadala, Jaydeep Sinha, Amir Azordegan
  • Patent number: 9087176
    Abstract: A method to collect data and train, validate and deploy statistical models to predict overlay errors using patterned wafer geometry data and other relevant information includes selecting a training wafer set, measuring at multiple lithography steps and calculating geometry differences, applying a plurality of predictive models to the training wafer geometry differences and comparing predicted overlay to the measured overlay on the training wafer set. The most accurate predictive model is identified and the results fed-forward to the lithography scanner tool which can correct for these effects and reduce overlay errors during the wafer scan-and-expose processes.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: July 21, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Wei Chang, Krishna Rao, Joseph Gutierrez, Ramon Olavarria, Craig Macnaughton, Amir Azordegan, Prasanna Dighe, Jaydeep Sinha
  • Patent number: 9029810
    Abstract: Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: May 12, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Craig MacNaughton, Sathish Veeraraghavan, Pradeep Vukkadala, Jaydeep Sinha, Amir Azordegan
  • Publication number: 20150124247
    Abstract: Methods and systems for determining one or more parameters of a wafer inspection process are provided. One method includes acquiring metrology data for a wafer generated by a wafer metrology system. The method also includes determining one or more parameters of a wafer inspection process for the wafer or another wafer based on the metrology data.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 7, 2015
    Inventors: Allen Park, Craig MacNaughton, Ellis Chang
  • Publication number: 20140353527
    Abstract: Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 4, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Craig MacNaughton, Sathish Veeraraghavan, Pradeep Vukkadala, Jaydeep Sinha, Amir Azordegan