Patents by Inventor Craig Marriott

Craig Marriott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9476367
    Abstract: A method that protects a direct injection fuel injector in a multi-fuel engine comprises selectively operating the engine with at least one of a directly injected fuel introduced through the direct injection fuel injector and a second fuel. When fuelling the multi-fuel engine with the second fuel, a fuel system protection technique is selectively commanded when one or more adverse conditions, such as the direct injection fuel injector requiring cooling, is determined to exist. The fuel system protection technique comprises (a) suspending fuelling with the second fuel and injecting the directly injected fuel for a first predetermined number of engine cycles, and (b) switching back to fuelling the multi-fuel engine with the second fuel for a second predetermined number of engine cycles. The first and second predetermined number of engine cycles are selected to keep torque disturbances below a predetermined threshold value.
    Type: Grant
    Filed: April 18, 2015
    Date of Patent: October 25, 2016
    Assignees: WESTPORT POWER INC., GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark E. Dunn, Craig Marriott, Ning Wu, Dehong Zhang, Raymond Bzymek, Joshua Cowgill, Ben Moscherosch
  • Publication number: 20160010569
    Abstract: A method that protects a direct injection fuel injector in a multi-fuel engine comprises selectively operating the engine with at least one of a directly injected fuel introduced through the direct injection fuel injector and a second fuel. When fuelling the multi-fuel engine with the second fuel, a fuel system protection technique is selectively commanded when one or more adverse conditions, such as the direct injection fuel injector requiring cooling, is determined to exist. The fuel system protection technique comprises (a) suspending fuelling with the second fuel and injecting the directly injected fuel for a first predetermined number of engine cycles, and (b) switching back to fuelling the multi-fuel engine with the second fuel for a second predetermined number of engine cycles. The first and second predetermined number of engine cycles are selected to keep torque disturbances below a predetermined threshold value.
    Type: Application
    Filed: April 18, 2015
    Publication date: January 14, 2016
    Inventors: Mark E. Dunn, Craig Marriott, Ning Wu, Dehong Zhang, Raymond Bzymek, Joshua Cowgill, Ben Moscherosch
  • Publication number: 20070261652
    Abstract: The apparatus of the present invention provides a lash adjuster feed channel for an engine assembly. The engine assembly includes first and second sets of hydraulic lash adjusters responsive to a variation in hydraulic fluid pressure to cause a variation in lift of first and second sets of engine valves respectively operatively connected thereto. The cylinder head defines a first feed passage in fluid communication with the first set of hydraulic lash adjusters, and a second feed passage in fluid communication with the second set of hydraulic lash adjusters. The valve lift of the first set of engine valves is independently variable by controlling the transfer of hydraulic pressure in the first feed passage, and the valve lift of the second set of engine valves is independently variable by controlling the transfer of hydraulic pressure in the second feed passage. A corresponding method is also provided.
    Type: Application
    Filed: May 15, 2006
    Publication date: November 15, 2007
    Inventors: Timothy Neal, Vimesh Patel, Craig Marriott
  • Publication number: 20070256651
    Abstract: A valve actuator assembly for an engine includes a movable poppet valve, and movable first and second spool valves. The assembly also includes an intermediate channel interconnecting the first and second spool valve, a driving channel, and a first and second feedback channel interconnecting the second spool valve and the poppet valve. The valve actuator assembly includes an actuator cooperating with the first spool valve to position the first spool valve to selectively allow high pressure fluid flow to the second spool valve and the driving channel to position the engine valve. The valve actuator assembly further includes a first and second on/off valve in respective fluid communication with the first feedback channel and the second feedback channel to selectively exhaust the first and second feedback channel to control motion of the second spool valve. The second spool valve includes a detent feature operable to maintain the second spool valve in a center biased position.
    Type: Application
    Filed: May 3, 2006
    Publication date: November 8, 2007
    Inventors: Craig Marriott, Zongxuan Sun
  • Publication number: 20070221148
    Abstract: A tuned induction control system for an engine at or near full load having a piston that is reciprocally disposed in a cylinder includes a first module that actuates an intake valve associated with the cylinder and a second module that determines a second intake valve open timing based on an intake air temperature, pressure and an engine speed. The first module actuates the intake valve during a first intake event and actuates the intake valve during a second intake event that is subsequent to the first intake event. The first and second intake events occur during a common intake stroke of the piston and the intake valve is opened at the second intake valve open timing during the second intake event.
    Type: Application
    Filed: March 24, 2006
    Publication date: September 27, 2007
    Inventor: Craig Marriott
  • Publication number: 20070166174
    Abstract: The invention relates to an apparatus and method of statically sealing a reciprocating-type fuel pump, such as a direct injection high pressure piston-type fuel pump. The first embodiment of the invention is a fuel pump comprising a pump body, a fuel reservoir within the pump body, wherein the fuel reservoir is capable of holding fuel and a bellows attached to the pump body, wherein the bellows is a stretchable membrane acting as a static seal. The second embodiment further comprises a diaphragm seal inside the pump body, and adjacent to the fuel reservoir, and a working fluid reservoir adjacent to the diaphragm seal, wherein the working fluid reservoir is capable of holding fluid. The diaphragm seal is a static seal separating the working fluid reservoir and the fuel reservoir.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 19, 2007
    Inventors: Craig Marriott, Karl Kreder
  • Publication number: 20060081202
    Abstract: A valve lift sensor detects the position of an engine valve. The valve lift sensor includes a movable target carried on an engine valve and a stationary coil carried within an engine valve assembly. A signal generator energizes the coil with an oscillating voltage to create an oscillating magnetic field, which is concentric to the coil for inductive transfer with the target. A comparator compares the voltage from the signal generator with the voltage at the resistor to determine the phase lag of resistor voltage relative to signal generator voltage and indicate the engine valve position. Using the phase lag, the comparator provides a pulse-width-modulated signal with a duty cycle proportional to the valve lift to an engine valve control operable to control the operation of the engine valve.
    Type: Application
    Filed: October 19, 2004
    Publication date: April 20, 2006
    Inventors: Douglas Verner, Craig Marriott
  • Publication number: 20050161013
    Abstract: An engine control system that controls operation of an internal combustion engine includes an intake manifold that is adjustable to a plurality of resonance geometric configurations. A controller monitors engine operation and classifies engine operation in one of a plurality of operational categories. The controller adjusts the intake manifold to a resonance geometric configuration associated with the operational category.
    Type: Application
    Filed: January 23, 2004
    Publication date: July 28, 2005
    Inventor: Craig Marriott
  • Publication number: 20050061283
    Abstract: A method for enabling combustion-assisted engine starting includes adjusting a throttle valve to provide an air flow rate to an engine of a vehicle that is sufficient to create starting torque. Fuel that is sufficient to create starting torque is injected into a cylinder of the engine during an intake stroke of the cylinder. A spark plug of the cylinder is disabled. An intake and exhaust valve of the cylinder are disabled. The engine is deactivated. A method for activating the engine includes enabling the spark plug. A piston of the cylinder is positioned between a TDC position of a compression stroke and a BDC position of an expansion stroke or between a TDC position of an exhaust stroke and a BDC position of an intake stroke. A fuel/air charge that is sufficient to create starting torque is ignited in the cylinder. The intake and exhaust valve are activated.
    Type: Application
    Filed: September 24, 2003
    Publication date: March 24, 2005
    Inventor: Craig Marriott