Patents by Inventor Craig Metzner

Craig Metzner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080057737
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydrofluoric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 6, 2008
    Inventors: CRAIG METZNER, Shreyas Kher, Shixue Han
  • Publication number: 20080044569
    Abstract: Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Inventors: Nyi Myo, Kenric Cho, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig Metzner, Paul Deaten
  • Publication number: 20070259112
    Abstract: The present invention provides methods, systems, and apparatus for epitaxial film formation that includes an epitaxial chamber adapted to form an epitaxial layer on a substrate; a deposition gas manifold adapted to supply at least one deposition gas and a carrier gas to the epitaxial chamber; and an etchant gas manifold, separate from the deposition gas manifold, and adapted to supply at least one etchant gas and a carrier gas to the epitaxial chamber. Numerous other aspects are disclosed.
    Type: Application
    Filed: April 6, 2007
    Publication date: November 8, 2007
    Inventors: David Ishikawa, Craig Metzner, Ali Zojaji, Yihwan Kim, Arkadii Samoilov
  • Publication number: 20070089836
    Abstract: A process kit for a semiconductor process chamber is provided herein. In one embodiment, a process kit for a semiconductor processing chamber, includes one or more components fabricated from a metal-free sintered silicon carbide material. The process kit comprises at least one of a substrate support, a pre-heat ring, lift pins, and substrate support pins. In another embodiment, a semiconductor process chamber is provided, having a chamber body and a substrate support disposed in the chamber body. The substrate support is fabricated from metal-free sintered silicon carbide. Optionally, the process chamber may include a process kit having at least one component fabricated from a metal-free sintered silicon carbide.
    Type: Application
    Filed: October 24, 2005
    Publication date: April 26, 2007
    Inventors: Craig Metzner, Per-Ove Hansson
  • Publication number: 20070077355
    Abstract: A film formation system 10 has a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, the top cover 11 has a reflective surface 13 for reflecting radiant energy back onto a substrate 19, pyrometers 405 for measuring the temperature of the substrate 19 across a number of zones, and at least one emissometer 410 for measuring the actual emissivity of the substrate 19. In another embodiment, a radiant heating system 313 is disposed under the substrate support 16. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 405, and the emissometer 410.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Juan Chacin, Aaron Hunter, Craig Metzner, Roger Anderson
  • Publication number: 20070074665
    Abstract: A film formation system 10 includes a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, a susceptor 16 is rotatably disposed in the system 10, and overlaps with a first peripheral member 205 disposed around the sidewalls 18. A radiant heating system 313 is disposed under the susceptor 305 to heat the substrate 19. In another embodiment, the top cover 11 has equally spaced pyrometers 58 for measuring the temperature of the substrate 19 across a number of zones. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 58.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Juan Chacin, Aaron Hunter, Craig Metzner, Roger Anderson
  • Publication number: 20070059948
    Abstract: Embodiments of the invention provide methods for forming hafnium materials, such as oxides and nitrides, by sequentially exposing a substrate to hafnium precursors and active oxygen or nitrogen species (e.g., ozone, oxygen radicals, or nitrogen radicals). The deposited hafnium materials have significantly improved uniformity when deposited by these atomic layer deposition (ALD) processes. In one embodiment, an ALD chamber contains an expanding channel having a bottom surface that is sized and shaped to substantially cover a substrate positioned on a substrate pedestal. During an ALD process for forming hafnium materials, process gases form a vortex flow pattern while passing through the expanding channel and sweep across the substrate surface. The substrate is sequentially exposed to chemical precursors that are pulsed into the process chamber having the vortex flow.
    Type: Application
    Filed: May 31, 2006
    Publication date: March 15, 2007
    Inventors: Craig Metzner, Shreyas Kher, Vidyut Gopal, Shixue Han, Shankarram Athreya
  • Publication number: 20060264067
    Abstract: Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
    Type: Application
    Filed: July 6, 2006
    Publication date: November 23, 2006
    Inventors: Shreyas Kher, Shixue Han, Craig Metzner
  • Publication number: 20060223339
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone one or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Application
    Filed: May 31, 2006
    Publication date: October 5, 2006
    Inventors: Craig Metzner, Shreyas Kher, Vidyut Gopal, Shixue Han, Shankarram Athreya
  • Publication number: 20060208215
    Abstract: The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
    Type: Application
    Filed: May 30, 2006
    Publication date: September 21, 2006
    Inventors: Craig Metzner, Shreyas Kher, Yeong Kim, M. Rocklein, Steven George
  • Publication number: 20060196421
    Abstract: An integrated deposition system is described that is capable of vaporizing low vapor pressure liquid precursors and conveying the vapor to a processing region to fabricate advanced integrated circuits. The integrated deposition system includes a heated exhaust system, a remote plasma generator, a processing chamber, a liquid delivery system, and a computer control module that together create a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors.
    Type: Application
    Filed: February 17, 2006
    Publication date: September 7, 2006
    Inventors: Bobby Ronsse, Craig Metzner, Richard Collins
  • Publication number: 20050271812
    Abstract: Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Application
    Filed: May 12, 2005
    Publication date: December 8, 2005
    Inventors: Nyi Myo, Kenric Choi, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig Metzner, Paul Deaten
  • Publication number: 20050009371
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Application
    Filed: August 6, 2004
    Publication date: January 13, 2005
    Inventors: Craig Metzner, Shreyas Kher, Shixue Han
  • Publication number: 20040198069
    Abstract: The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 7, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Craig Metzner, Shreyas Kher, Yeong Kwan Kim, M. Noel Rocklein, Steven M. George
  • Publication number: 20030235961
    Abstract: The present invention is directed to depositing multicomponent films with a cyclical sequential deposition (CSD) process. The CSD process deposits a film of a material on a surface by repeating a cycle of process steps comprising sequentially exposing the surface to at least two reactants. The reactants contain precursors that supply the elements that form the multicomponent material. The reactant components that are not precursors may react with the at least one precursor to form a film of the material, or may react with the surface onto which the film of material is to be deposited to prepare the surface for deposition. Each CSD cycle produces a discrete layer of a multicomponent material. The CSD cycle is repeated, depositing one layer each cycle, until the film of multicomponent material reaches the desired thickness.
    Type: Application
    Filed: April 4, 2003
    Publication date: December 25, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Craig Metzner, Walter Benjamin Glenn