Patents by Inventor Craig O. Shott

Craig O. Shott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12270946
    Abstract: The design of an existing air-to-air missile seeker is adapted to new missions that require both active laser illumination and detection (passive or active) capabilities. The gimbal is used to point the laser beam to a desired location in a transmit FOR. This approach minimizes the size, weight and power of the sensor because only a small portion of the transmit FOR is illuminated at any instant. This minimizes the laser output required, which reduces the power to operate the laser and the power to maintain the laser at operating temperature. In existing seekers, the gimbal points the detector in the desired direction to expand its FOR. To address the limitations of coupling the laser beam into the gimbaled optical system, the gimbal cannot perform the steering function for the detector. Instead, a staring detector receives light through an off-gimbal aperture within a fixed receive FOR that overlaps the transmit FOR.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: April 8, 2025
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Publication number: 20240402303
    Abstract: The design of an existing air-to-air missile seeker is adapted to new missions that require both active laser illumination and detection (passive or active) capabilities. The gimbal is used to point the laser beam to a desired location in a transmit FOR. This approach minimizes the size, weight and power of the sensor because only a small portion of the transmit FOR is illuminated at any instant. This minimizes the laser output required, which reduces the power to operate the laser and the power to maintain the laser at operating temperature. In existing seekers, the gimbal points the detector in the desired direction to expand its FOR. To address the limitations of coupling the laser beam into the gimbaled optical system, the gimbal cannot perform the steering function for the detector. Instead, a staring detector receives light through an off-gimbal aperture within a fixed receive FOR that overlaps the transmit FOR.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 5, 2024
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Patent number: 12061334
    Abstract: An optical scanning system includes one or more Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) used to scan a field-of-view (FOV) over a field-of-regard (FOR). The MEMS MMA is configured such that optical radiation from each point in the FOV does not land on or originate from out-of-phase mirror segments and a diffraction limited resolution of the optical system is limited by the size of the entrance pupil and not by the size of individual mirrors.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: August 13, 2024
    Assignee: Raytheon Company
    Inventors: David J. Knapp, Gerald P. Uyeno, Sean D. Keller, Benn H. Gleason, Eric Rogala, Mark K. Lange, Garret A. Odom, Craig O. Shott, Zachary D. Barker
  • Patent number: 11936991
    Abstract: An EO/IR optical imaging system comprises collection optics to collect light from a scene into a collimated or near-collimated space. An imaging detector is positioned at the image plane and configured to integrate incident light (radiant flux or photons) over an image frame and readout a sequence of pixelated images at a frame rate, said detector exhibiting a saturation threshold. To prevent saturation of the imaging detector, a MEMS MMA is positioned in the collimated or near-collimated space. A secondary detector (via a pick-off) samples light from the collimated or near-collimated space multiple times per image frame. A controller responsive to the sampled light commands a percentage of the mirrors to re-direct light incident on those mirrors to a light dump and commands the remaining mirrors to re-direct light incident on those mirrors to the imaging detector.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 19, 2024
    Assignee: Raytheon Company
    Inventors: Andrew M. Wilds, Craig O. Shott, Thomas Sanderson
  • Patent number: 11884019
    Abstract: A method of encoding information in an object that may allow for enhanced tailorability of the encoding during the processing and/or also enhance the amount of information encoded in the object. More particularly, the method of encoding the object enables the magnetic characteristics at different spatial locations of the object to be modified to form a spatial array of the different magnetic characteristics for representing the encoded information. The method can be used to permanently embed a magnetic signature in a non-magnetic object, for example. More specifically, the method allows different portions of the object to exhibit different magnetic characteristics at each spatial location of the object in three dimensions, and more particularly configuring the magnetic vectors of those portions in many possible orientations with a 4n steradian solid angle and/or with different intensities.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: January 30, 2024
    Assignee: Raytheon Company
    Inventors: Andrew M. Wilds, Ryan D. White, Craig O. Shott
  • Patent number: 11835709
    Abstract: A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Craig O. Shott, Jon E. Leigh, Garret A. Odom
  • Patent number: 11835705
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength and receive passive signals over a range of wavelengths while controlling pointing without benefit of measuring and locating the active signal return. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) is configured to block the received active signal (e.g. reflections off a target in a scene) and process only the passive emissions. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Patent number: 11644542
    Abstract: An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: May 9, 2023
    Assignee: Raytheon Company
    Inventors: Craig O. Shott, Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Garret A. Odom, Jon E. Leigh
  • Patent number: 11635746
    Abstract: A system and method for authenticating a physical object. The method may include the steps of: (1) encoding a feed material with randomized information; (2) forming the object with the feed material such that one or more portions of the object have respective randomized signatures based upon at least some of the randomized information of the feed material; (3) reading the respective randomized signatures at the one or portions of the object; (4) creating a profile of the respective randomized signatures at the one or more portions of the object based upon information from the reading; (5) transporting the physical object to an authenticator, and transmitting the profile to the authenticator; (6) reading the respective randomized signatures at the one or more portions of the object by the authenticator; and (7) comparing the reading by the authenticator to the profile received by the authenticator to thereby authenticate the physical object.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 25, 2023
    Assignee: Raytheon Company
    Inventors: Andrew M. Wilds, Craig O. Shott, Ryan D. White
  • Publication number: 20230087666
    Abstract: An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Craig O. Shott, Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Garret A. Odom, Jon E. Leigh
  • Publication number: 20230043382
    Abstract: An EO/IR optical imaging system comprises collection optics to collect light from a scene into a collimated or near-collimated space. An imaging detector is positioned at the image plane and configured to integrate incident light (radiant flux or photons) over an image frame and readout a sequence of pixelated images at a frame rate, said detector exhibiting a saturation threshold. To prevent saturation of the imaging detector, a MEMS MMA is positioned in the collimated or near-collimated space. A secondary detector (via a pick-off) samples light from the collimated or near-collimated space multiple times per image frame. A controller responsive to the sampled light commands a percentage of the mirrors to re-direct light incident on those mirrors to a light dump and commands the remaining mirrors to re-direct light incident on those mirrors to the imaging detector.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 9, 2023
    Inventors: Andrew M. Wilds, Craig O. Shott, Thomas Sanderson
  • Publication number: 20230022548
    Abstract: An optical scanning system includes one or more Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) used to scan a field-of-view (FOV) over a field-of-regard (FOR). The MEMS MMA is configured such that optical radiation from each point in the FOV does not land on or originate from out-of-phase mirror segments and a diffraction limited resolution of the optical system is limited by the size of the entrance pupil and not by the size of individual mirrors.
    Type: Application
    Filed: April 15, 2021
    Publication date: January 26, 2023
    Inventors: David J. Knapp, Gerald P. Uyeno, Sean D. Keller, Benn H. Gleason, Eric Rogala, Mark K. Lange, Garret A. Odom, Craig O. Shott, Zachary D. Barker
  • Patent number: 11555678
    Abstract: A projectile including an ejectable aft fin housing assembly. The aft fin housing assembly includes aft fins that increase a distance between a center of gravity and a center of pressure of the projectile, improving passive stabilization of the projectile. Once the projectile has been passively stabilized, the aft fin housing assembly is ejected, decreasing a distance between the center of gravity and the center of pressure, improving active stabilization of the projectile.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: January 17, 2023
    Assignee: Raytheon Company
    Inventors: Craig O. Shott, Brayden Peery, Gary W. Liles, Alex Karwas, Gregory J. Larson
  • Patent number: 11550146
    Abstract: Small angle optical beam steering is performed using a Micro-Electro-Mechanical System (MEMS) Micro-Mirror Array (MMA) that minimizes diffraction for a specified steering angle, Generally speaking, this is accomplished with a MEMS MMA that exhibits a “piston” capability to translate individual mirrors in addition to the tip and tilt capabilities. Adjacent mirrors can be tipped/tilted to the specified steering angle and then translated by a requisite amount to approximate a continuous surface. For a specified steering angle, the MEMS MMA is partitioned into one or more sections with each section including the maximum number of mirrors that can be grouped together and actuated to approximate a continuous surface given a maximum translation z. As a result, the only edge discontinuities exist between adjacent sections thereby minimizing distortion for a given steering angle.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: January 10, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Mark K. Lange, Sean D. Keller, Benn H. Gleason, Zachary D. Barker, Craig O. Shott, Eric Rogala
  • Patent number: 11543220
    Abstract: A projectile including an ejectable aft fin housing assembly. The aft fin housing assembly includes aft fins that increase a distance between a center of gravity and a center of pressure of the projectile, improving passive stabilization of the projectile. Once the projectile has been passively stabilized, the aft fin housing assembly is ejected, decreasing a distance between the center of gravity and the center of pressure, improving active stabilization of the projectile.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: January 3, 2023
    Assignee: Raytheon Company
    Inventors: Craig O. Shott, Brayden Peery, Gary W. Liles, Alex Karwas, Gregory J. Larson
  • Patent number: 11449494
    Abstract: A distributed secured database system includes a ledger, a transmitting device, edge devices, and a time synchronization source. An evolving nonce is generated at the transmitting device and the edge devices. The evolving nonce is time-synced across the transmitting device and the edge devices. A hash value is generated at the transmitting device and the edge devices using the evolving nonce. The hash value is verified at the transmitting device and each of the edge devices during a particular time frame. A block is added to the distributed secured database system when the hash value is verified by the transmitting device and the edge devices.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: September 20, 2022
    Assignee: Raytheon Company
    Inventors: Andrew M. Wilds, Gregory M. Wagner, Craig O. Shott, James N. Head
  • Publication number: 20220252865
    Abstract: A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventors: Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Craig O. Shott, Jon E. Leigh, Garret A. Odom
  • Publication number: 20220229285
    Abstract: Small angle optical beam steering is performed using a Micro-Electro-Mechanical System (MEMS) Micro-Mirror Array (MMA) that minimizes diffraction for a specified steering angle, Generally speaking, this is accomplished with a MEMS MMA that exhibits a “piston” capability to translate individual mirrors in addition to the tip and tilt capabilities. Adjacent mirrors can be tipped/tilted to the specified steering angle and then translated by a requisite amount to approximate a continuous surface. For a specified steering angle, the MEMS MMA is partitioned into one or more sections with each section including the maximum number of mirrors that can be grouped together and actuated to approximate a continuous surface given a maximum translation z. As a result, the only edge discontinuities exist between adjacent sections thereby minimizing distortion for a given steering angle.
    Type: Application
    Filed: January 19, 2021
    Publication date: July 21, 2022
    Inventors: Gerald P. Uyeno, Mark K. Lange, Sean D. Keller, Benn H. Gleason, Zachary D. Barker, Craig O. Shott, Eric Rogala
  • Publication number: 20220207021
    Abstract: A distributed secured database system includes a ledger, a transmitting device, edge devices, and a time synchronization source. An evolving nonce is generated at the transmitting device and the edge devices. The evolving nonce is time-synced across the transmitting device and the edge devices. A hash value is generated at the transmitting device and the edge devices using the evolving nonce. The hash value is verified at the transmitting device and each of the edge devices during a particular time frame. A block is added to the distributed secured database system when the hash value is verified by the transmitting device and the edge devices.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Andrew M. Wilds, Gregory M. Wagner, Craig O. Shott, James N. Head
  • Publication number: 20220107490
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength and receive passive signals over a range of wavelengths while controlling pointing without benefit of measuring and locating the active signal return. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) is configured to block the received active signal (e.g. reflections off a target in a scene) and process only the passive emissions. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 7, 2022
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh