Patents by Inventor Craig R. Chaney

Craig R. Chaney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100327159
    Abstract: In an ion implanter, a Faraday cup is utilized to receive an ion beam generated during ion source cleaning. The detected beam has an associated mass spectrum which indicates when the ion source cleaning process is complete. The mass spectrum results in a signal composed of a cleaning agent and the material comprising the ion source. This signal will rise over time as the ion source chamber is being cleaned and will level-off and remain constant once the deposits are etched away from the source chamber, thereby utilizing existing implant tools to determine endpoint detection during ion source cleaning.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Wilhelm P. Platow, Neil J. Bassom, Peter F. Kurunczi, Alexander S. Perel, Craig R. Chaney
  • Publication number: 20100155619
    Abstract: In an ion implanter, an inert gas is directed at a cathode assembly near an ion source chamber via a supply tube. The inert gas is provided with a localized directional flow toward the cathode assembly to reduce unwanted concentrations of cleaning or dopant gases introduced into the ion source chamber, thereby reducing the effects of unwanted filament growth in the cathode assembly and extending the manufacturing life of the ion source.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: Varian Semiconductor Equipment Associates Inc.
    Inventors: John Bon-Woong Koo, David J. Twiss, Chris Campbell, Frank Sinclair, Alexander S. Perel, Craig R. Chaney, Wilhelm P. Platow, Eric R. Cobb
  • Publication number: 20100140077
    Abstract: An ion source that utilizes exited and/or atomic gas injection is disclosed. In an ion beam application, the source gas can be used directly, as it is traditionally supplied. Alternatively or additionally, the source gas can be altered by passing it through a remote plasma source prior to being introduced to the ion source chamber. This can be used to create excited neutrals, heavy ions, metastable molecules or multiply charged ions. In another embodiment, multiple gasses are used, where one or more of the gasses are passed through a remote plasma generator. In certain embodiments, the gasses are combined in a single plasma generator before being supplied to the ion source chamber. In plasma immersion applications, plasma is injected into the process chamber through one or more additional gas injection locations. These injection locations allow the influx of additional plasma, produced by remote plasma sources external to the process chamber.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 10, 2010
    Inventors: Bon-Woong Koo, Victor Benveniste, Christopher A. Rowland, Craig R. Chaney, Frank Sinclair, Neil J. Bassom
  • Publication number: 20100024841
    Abstract: An ion source and method of cleaning are disclosed. One or more heating units are placed in close proximity to the inner volume of the ion source, so as to affect the temperature within the ion source. In one embodiment, one or more walls of the ion source have recesses into which heating units are inserted. In another embodiment, one or more walls of the ion source are constructed of a conducting circuit and an insulating layer. By utilizing heating units near the ion source, it is possible to develop new methods of cleaning the ion source. Cleaning gas is flowed into the ion source, where it is ionized, either by the cathode, as in normal operating mode, or by the heat generated by the heating units. The cleaning gas is able to remove residue from the walls of the ion source more effectively due to the elevated temperature.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 4, 2010
    Inventors: Bon-Woong Koo, Christopher R. Campbell, Craig R. Chaney, Robert Lindberg, Wilheim P. Platow, Alexander S. Perel
  • Patent number: 7655932
    Abstract: Techniques for providing ion source feed materials are disclosed. In one particular exemplary embodiment, the techniques may be realized as a container for supplying an ion source feed material. The container may comprise an internal cavity to be pre-filled with an ion source feed material. The container may also comprise an outer body configured to be removably loaded into a corresponding housing that is coupled to an ion source chamber via a nozzle assembly. The container may further comprise an outlet to seal in the pre-filled ion source feed material, the outlet being further configured to engage with the nozzle assembly to establish a flow path between the internal cavity and the ion source chamber. The container may be configured to be a disposable component.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: February 2, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher R. Hatem, Craig R. Chaney, Eric R. Cobb, Joseph C. Olson, Chris Campbell
  • Publication number: 20090314951
    Abstract: In a cleaning process for an ion source chamber, an electrode positioned outside of the ion source chamber includes a suppression plug. When the cleaning gas is introduced into the source chamber, the suppression plug may engage an extraction aperture of the source chamber to adjust the gas pressure within the chamber to enhance chamber cleaning via. plasma-enhanced chemical reaction. The gas conductance between the source chamber aperture and the suppression plug can be adjusted during the cleaning process to provide optimum cleaning conditions and to exhaust unwanted deposits.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Costel Biloiu, Craig R. Chaney, Eric R. Cobb, Bon-Woong Koo, Wilhelm P. Platow
  • Publication number: 20090242793
    Abstract: Liner elements to protect the ion source housing and also increase the power efficiency of the ion source are disclosed. Two liner elements, preferably constructed from tungsten, are inserted into the ion source chamber, one placed against each of the two sidewalls. These inserts are electrically biased so as to induce an electrical field that is perpendicular to the applied magnetic field. Such an arrangement has been unexpectedly found to increase the life of not only the ion chamber housing, but also the indirectly heated cathode (IHC) and the repeller. In addition, the use of these biased liner elements also improved the power efficiency of the ion source; allowing more ions to be generated at a given power level, or an equal number of ions to be generated at a lower power level.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Russell J. Low, Jay T. Scheuer, Alexander S. Perel, Craig R. Chaney, Neil J. Bassom
  • Patent number: 7586109
    Abstract: A technique improving the performance and extending the lifetime of an ion source with gas dilution is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving performance and extending lifetime of an ion source in an ion implanter with gas dilution. The method may comprise releasing a predetermined amount of dopant gas into an ion source chamber, and releasing a predetermined amount of dilutant gas into the ion source chamber. The dilutant gas may comprise a mixture of a xenon-containing gas and a hydrogen-containing gas for diluting the dopant gas to improve the performance and extend the lifetime of the ion source.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: September 8, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexander S Perel, Craig R Chaney
  • Publication number: 20090200460
    Abstract: To implant a carbon-containing species, a gas containing carbon is ionized in the ion chamber. The ionization of this gas will typically produce a number of ionized species. However, many of these resulting ionized species are not beneficial to the desired implant, as they contain only non-carbon atoms. These species must be eliminated before the implantation, leaving only carbon-based species. However, the current of the desired species may be low, thereby requiring extra energy or time to implant the desired dosage of carbon into a substrate. This can be improved through the use of a second gas. This second gas is used to dilute the primary carbon-containing gas to be ionized in the ion chamber. By incorporating this dilution gas, more of the resulting ionized species are beneficial to the carbon implantation.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 13, 2009
    Inventors: Craig R. Chaney, Adolph R. Dori, Christopher R. Hatem, Alexander S. Perel
  • Patent number: 7491947
    Abstract: A technique improving performance and lifetime of indirectly heated cathode ion sources is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving performance and lifetime of an indirectly heated cathode (IHC) ion source in an ion implanter. The method may comprise maintaining an arc chamber of the IHC ion source under vacuum during a maintenance of the ion implanter, wherein no gas is supplied to the arc chamber. The method may also comprise heating a cathode of the IHC ion source by supplying a filament with a current. The method may further comprise biasing the cathode with respect to the filament at a current level of 0.5-5 A without biasing the arc chamber with respect to the cathode. The method additionally comprise keeping a source magnet from producing a magnetic field inside the arc chamber.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: February 17, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric R. Cobb, Russell J. Low, Craig R. Chaney, Leo V. Klos
  • Patent number: 7446326
    Abstract: A technique for improving ion implanter productivity is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving productivity of an ion implanter having an ion source chamber. The method may comprise supplying a gaseous substance to the ion source chamber, the gaseous substance comprising one or more reactive species for generating ions for the ion implanter. The method may also comprise stopping the supply of the gaseous substance to the ion source chamber. The method may further comprise supplying a hydrogen containing gas to the ion source chamber for a period of time after stopping the supply of the gaseous substance.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 4, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Craig R. Chaney, Russell J. Low, Jonathan Gerald England
  • Publication number: 20080179545
    Abstract: A technique improving the performance and extending the lifetime of an ion source with gas dilution is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving performance and extending lifetime of an ion source in an ion implanter with gas dilution. The method may comprise releasing a predetermined amount of dopant gas into an ion source chamber, and releasing a predetermined amount of dilutant gas into the ion source chamber. The dilutant gas may comprise a mixture of a xenon-containing gas and a hydrogen-containing gas for diluting the dopant gas to improve the performance and extend the lifetime of the ion source.
    Type: Application
    Filed: March 13, 2007
    Publication date: July 31, 2008
    Applicant: Varian Semiconductor Equipment Associates
    Inventors: Alexander S. Perel, Craig R. Chaney
  • Publication number: 20080169427
    Abstract: Techniques for providing ion source feed materials are disclosed. In one particular exemplary embodiment, the techniques may be realized as a container for supplying an ion source feed material. The container may comprise an internal cavity to be pre-filled with an ion source feed material. The container may also comprise an outer body configured to be removably loaded into a corresponding housing that is coupled to an ion source chamber via a nozzle assembly. The container may further comprise an outlet to seal in the pre-filled ion source feed material, the outlet being further configured to engage with the nozzle assembly to establish a flow path between the internal cavity and the ion source chamber. The container may be configured to be a disposable component.
    Type: Application
    Filed: July 11, 2007
    Publication date: July 17, 2008
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. HATEM, Craig R. Chaney, Eric R. Cobb, Joseph C. Olson, Chris Campbell