Patents by Inventor Craig R. Horne

Craig R. Horne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7323158
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 29, 2008
    Assignee: NanoGram Corporation
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 7306845
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: December 11, 2007
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20070212510
    Abstract: Thin semiconductor foils can be formed using light reactive deposition. These foils can have an average thickness of less than 100 microns. In some embodiments, the semiconductor foils can have a large surface area, such as greater than about 900 square centimeters. The foil can be free standing or releasably held on one surface. The semiconductor foil can comprise elemental silicon, elemental germanium, silicon carbide, doped forms thereof, alloys thereof or mixtures thereof. The foils can be formed using a release layer that can release the foil after its deposition. The foils can be patterned, cut and processed in other ways for the formation of devices. Suitable devices that can be formed form the foils include, for example, photovoltaic modules and display control circuits.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 13, 2007
    Inventors: Henry Hieslmair, Ronald J. Mosso, Robert B. Lynch, Shivkumar Chiruvolu, William E. McGovern, Craig R. Horne, Narayan Solayappan, Ronald M. Cornell
  • Patent number: 7112449
    Abstract: Combinatorial synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of product composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition, the second quantity of product composition being material different from the first quantity of product composition. An apparatus includes a nozzle connected to a reactant source and a plurality of collectors. The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: September 26, 2006
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Sujeet Kumar, Craig R. Horne, Ronald J. Mosso, James T. Gardner, Shivkumar Chiruvolo, Seung M. Lim
  • Patent number: 6849334
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 1, 2005
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20040197659
    Abstract: Lithium metal oxide particles have been produced having average diameters less than about 100 nm. Composite metal oxides of particular interest include, for example, lithium cobalt oxide, lithium nickel oxide, lithium titanium oxides and derivatives thereof. These nanoparticles composite metal oxides can be used as electroactive particles in lithium or lithium ion batteries. Batteries of particular interest include lithium titanium oxide in the negative electrode and lithium cobalt manganese oxide in the positive electrode.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 7, 2004
    Applicant: NanoGram Corporation
    Inventors: Sujeet Kumar, Craig R. Horne
  • Publication number: 20040120882
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Application
    Filed: September 4, 2003
    Publication date: June 24, 2004
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 6749648
    Abstract: Lithium metal oxide particles have been produced having average diameters less than about 100 nm. Composite metal oxides of particular interest include, for example, lithium cobalt oxide, lithium nickel oxide, lithium titanium oxides and derivatives thereof. These nanoparticles composite metal oxides can be used as electroactive particles in lithium or lithium ion batteries. Batteries of particular interest include lithium titanium oxide in the negative electrode and lithium cobalt manganese oxide in the positive electrode.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: June 15, 2004
    Assignee: NanaGram Corporation
    Inventors: Sujeet Kumar, Craig R. Horne
  • Patent number: 6723435
    Abstract: Optical fiber preforms can comprise a glass preform structure with an inner cavity. A powder can be placed within the inner cavity having an average primary particle size of less than about one micron. The powder can be in the form of an unagglomerated particles or a powder coating with a degree of agglomeration or hard fusing ranging from none to significant amounts as long as the primary particles are visible in a micrograph. Powders can be placed within a preform structure by forming a slurry with a dispersion of submicron/nanoscale particles within a cavity within the prefrom. In other embodiments, a powder coating is formed within a preform structure by depositing the powder coating directly from a reaction product stream. The formation of the powder coating can be formed within the reaction chamber or outside of the reaction chamber by flowing the product particle stream through a conduit leading to the preform structure. In additional embodiments, a powder coating is placed on an insert, e.g.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: April 20, 2004
    Assignee: NanoGram Corporation
    Inventors: Craig R. Horne, Jesse S. Jur, Ronald J. Mosso, Eric H. Euvrard, Xiangxin Bi
  • Publication number: 20030203205
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: July 15, 2002
    Publication date: October 30, 2003
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern, Pierre J. DeMascarel, Robert B. Lynch
  • Publication number: 20030118841
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: March 15, 2002
    Publication date: June 26, 2003
    Inventors: Craig R. Horne, Peirre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20030044346
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Application
    Filed: October 16, 2002
    Publication date: March 6, 2003
    Applicant: NanoGram Corporation
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Publication number: 20020192137
    Abstract: Nanoscale and submicron particles have been produced with polyatomic anions. The particles can be crystalline or amorphous. The particles are synthesized in a flowing reactor, preferably with an intense light beam driving the reaction. In preferred embodiments, the particles are highly uniform. Batteries can be formed from submicron and nanoscale lithium metal phosphates. Coatings also can be formed from the particles.
    Type: Application
    Filed: April 30, 2001
    Publication date: December 19, 2002
    Inventors: Benjamin Chaloner-Gill, Allison A. Pinoli, Craig R. Horne, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 6482374
    Abstract: Lithium manganese oxide particles have been produced with an average diameter less than about 250 nm. The particles have a high degree of uniformity. The particles can be formed by the heat treatment of nanoparticles of manganese oxide. Alternatively, crystalline lithium manganese oxide particles can be formed directly by laser pyrolysis. The lithium manganese oxide particles are useful as active materials in the positive electrodes of lithium based batteries. Improved batteries result from the use of uniform nanoscale lithium manganese oxide particles.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: November 19, 2002
    Assignee: NanoGram Corporation
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Publication number: 20020064497
    Abstract: Metal vanadium oxide particles have been produced with an average diameter less than about 500 nm. The particles are produced from nanocrystalline vanadium oxide particles. Silver vanadium oxide particles, for example, can be formed by the heat treatment of a mixture of nanoscale vanadium oxide and a silver compound. Other metal vanadium oxide particles can be produced by similar processes. The metal vanadium oxide particles have very uniform properties.
    Type: Application
    Filed: January 9, 2001
    Publication date: May 30, 2002
    Inventors: Craig R. Horne, Sujeet Kumar, James P. Buckley, Xiangxin Bi
  • Patent number: 6225007
    Abstract: Metal vanadium oxide particles have been produced with an average diameter less than about 500 nm. The particles are produced from nanocrystalline vanadium oxide particles. Silver vanadium oxide particles, for example, can be formed by the heat treatment of a mixture of nanoscale vanadium oxide and a silver compound. Other metal vanadium oxide particles can be produced by similar processes. The metal vanadium oxide particles have very uniform properties.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: May 1, 2001
    Assignee: NanoGram Corporation
    Inventors: Craig R. Horne, Sujeet Kumar, James P. Buckley, Xiangxin Bi
  • Patent number: 6136287
    Abstract: Lithium manganese oxide particles have been produced with an average diameter less than about 250 nm. The particles have a high degree of uniformity. The particles are formed by the heat treatment of nanoparticles of manganese oxide. The lithium manganese oxide particles are useful as active materials in the positive electrodes of lithium based batteries. Improved batteries result from the use of the uniform nanoscale lithium manganese oxide particles.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: October 24, 2000
    Assignee: NanoGram Corporation
    Inventors: Craig R. Horne, Sujeet Kumar, Hariklia Dris Reitz, James T. Gardner, Xiangxin Bi
  • Patent number: 5368667
    Abstract: A device having a thin ceramic layer therein, is made by preparing a mixture of ceramic particles, a binder, and a plasticizer, and forming the mixture into a ceramic layer. A second layer is placed adjacent to the ceramic layer to form a composite layered structure. The thickness of the composite layered structure is reduced, preferably by rolling, until the ceramic layer portion of the composite layered structure has a preselected small thickness. If desired, the thickness of the ceramic layer can be reduced to an arbitrarily small value by stacking the reduced composite layered structures (or one of the layered structures with another structure) and repeating the reducing operation on the stack. The ceramic layer having the preselected thickness is assembled into a device. Devices that can be prepared by this approach include, for example, multilayer capacitors, solid oxide fuel cells, and solid-electrolyte electrochemical storage cells.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: November 29, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Nguyen Q. Minh, Craig R. Horne, James V. Guiheen
  • Patent number: 5290642
    Abstract: In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
    Type: Grant
    Filed: September 11, 1990
    Date of Patent: March 1, 1994
    Assignee: AlliedSignal Aerospace
    Inventors: Nguyen Q. Minh, Craig R. Horne
  • Patent number: 5162167
    Abstract: The invention details a two-step densifying process, method, and apparatus for making a solid oxide ceramic fuel cell. According to the invention, a limited number of anode-electrolyte-cathode cells separated by a single or trilayer interconnect are formed and densified. Subsequently, a plurality of the densified cells are stacked and further processed to form a monolithic array.
    Type: Grant
    Filed: September 11, 1990
    Date of Patent: November 10, 1992
    Assignee: Allied-Signal Inc.
    Inventors: Nguyen Q. Minh, Craig R. Horne