Patents by Inventor Craig Rollin Yeakle

Craig Rollin Yeakle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8828252
    Abstract: A silsesquioxane resin is applied on top of the patterned photo-resist and cured to produce a cured silsesquioxane resin on top of the pattern surface. Subsequently, an aqueous base stripper or a reactive ion etch recipe containing CF4 is used to “etch back” the silicon resin to the top of the photoresist material, exposing the entire top surface of the photoresist. Then, a second reactive ion etch recipe containing O2 to etch away the photoresist. The result is a silicon resin film with via holes with the size and shape of the post that were patterned into the photoresist. Optionally, the new pattern can be transferred into the underlying layer(s).
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 9, 2014
    Assignee: Dow Corning Corporation
    Inventors: Michael L. Bradford, Eric Scott Moyer, Kasumi Takeuchi, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 8653217
    Abstract: A method of forming an antireflective coating on an electronic device comprising (A) applying to an electronic device an ARC composition comprising (i) a silsesquioxane resin having the formula (PhSiO(3-X)/2(OH)x)mHSiO(3-x)/2(OH)x)N(MeSiO(3-x)/2(OH)x)p where Ph is a phenyl group, Me is a methyl group, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, and m+n+p?1; and (ii) a solvent; and (B) removing the solvent and curing the silsesquioxane resin to form an antireflective coating on the electronic device.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: February 18, 2014
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Patent number: 8648125
    Abstract: Disclosed is silsesquioxane resin composition that contains a free radical curable functional group that is stabilized with a hydrophilic inhibitor. The hydrophilic inhibitor that has the capability to scavenge free radicals such as ascorbic acid or salicylic acid is used to stabilize the resin. The resins are useful in semiconductor formation such as for anti-reflective coatings, hardmasks or photoresist layers.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: February 11, 2014
    Assignee: Dow Corning Corporation
    Inventors: Andrew MacMillan, Eric Scott Moyer, Michael Robert Reiter, Kasumi Takeuchi, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 8377634
    Abstract: This invention relates to acrylic functional resin compositions. More particularly, this invention relates to Poly [organ-co-(meth)acryloxyorgano]silsequioxane resins that are curable upon exposure to ultraviolet radiation with photo initiator or upon heating with or without a free radical generator. The resin compositions have high storage stability at room temperature and produces films that are useful as planarization layer, interlayer dielectric, passivation layer, gas permeable layer, negative photoresist, antireflective coating, conformal coating and IC packaging.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 19, 2013
    Assignee: Dow Corning Corporation
    Inventors: John Dean Albaugh, Gregory Scott Becker, Sina Maghsoodi, Eric Scott Moyer, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 8304161
    Abstract: A silsesquioxane resin comprised of the units (Ph(CH2)rSiO(3-x)/2(OR?)x)m, (HSiO(3-x)/2(OR?)x)n?(MeSiO(3-x)/2(OR?)x)o?(RSiO(3-x)/2(OR?)x)p, (R1SiO(3-x)/2(OR?)x)q where Ph is a phenyl group, Me is a methyl group; R? is hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; R is selected from an aryl sulfonate ester group; and R1 is selected from substituted phenyl groups, ester groups, polyether groups; mercapto groups, and reactive or curable organic functional groups; and r has a value of 0, 1, 2, 3, or 4; x has a value of 0, 1 or 2; wherein in the resin m has a value of 0 to 0.95; n has a value of 0.05 to 0.95; o has a value of 0.05 to 0.95; p has a value of 0.05 to 0.5; q has a value of 0 to 0.5; and m+n+o+p+q=1.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Dow Corning Corporation
    Inventors: Michael L. Bradford, Eric Scott Moyer, Sheng Wang, Craig Rollin Yeakle
  • Publication number: 20120252920
    Abstract: Disclosed is silsesquioxane resin composition that contains a free radical curable functional group that is stabilized with a hydrophilic inhibitor. The hydrophilic inhibitor that has the capability to scavenge free radicals such as ascorbic acid or salicylic acid is used to stabilize the resin. The resins are useful in semiconductor formation such as for anti-reflective coatings, hardmasks or photoresist layers.
    Type: Application
    Filed: December 2, 2010
    Publication date: October 4, 2012
    Inventors: Andrew MacMillan, Eric Scott Moyer, Michael Robert Reiter, Kasumi Takeuchi, Sheng Wang, Craig Rollin Yeakle
  • Publication number: 20120123135
    Abstract: A silsesquioxane resin is applied on top of the patterned photo-resist and cured to produce a cured silsesquioxane resin on top of the pattern surface. Subsequently, an aqueous base stripper or a reactive ion etch recipe containing CF4 is used to “etch back” the silicon resin to the top of the photoresist material, exposing the entire top surface of the photoresist. Then, a second reactive ion etch recipe containing O2 to etch away the photoresist. The result is a silicon resin film with via holes with the size and shape of the post that were patterned into the photoresist. Optionally, the new pattern can be transferred into the underlying layer(s).
    Type: Application
    Filed: June 22, 2010
    Publication date: May 17, 2012
    Inventors: Michael L. Bradford, Eric Scott Moyer, Kasumi Takeuchi, Sheng Wang, Craig Rollin Yeakle
  • Publication number: 20110301269
    Abstract: A method of forming an antireflective coating on an electronic device comprising (A) applying to an electronic device an ARC composition comprising (i) a silsesquioxane resin having the formula (PhSiO(3-X)/2(OH)x)mHSiO(3-x)/2(OH)x)N(MeSiO(3-x)/2(OH)x)p where Ph is a phenyl group, Me is a methyl group, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, and m+n+p?1; and (ii) a solvent; and (B) removing the solvent and curing the silsesquioxane resin to form an antireflective coating on the electronic device.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Inventors: PENG-FEI FU, ERIC SCOTT MOYER, CRAIG ROLLIN YEAKLE
  • Patent number: 8025927
    Abstract: A method of forming an antireflective coating on an electronic device comprising (A) applying to an electronic device an ARC composition comprising (i) a silsesquioxane resin having the formula (PhSiO(3-X)/2(OH)x)mHSiO(3-x)/2(OH)x)N(MeSiO(3-x)/2(OH)x)p where Ph is a phenyl group, Me is a methyl group, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, and m+n+p?1; and (ii) a solvent; and (B) removing the solvent and curing the silsesquioxane resin to form an antireflective coating on the electronic device.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: September 27, 2011
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Publication number: 20110003249
    Abstract: A silsesquioxane resin comprised of the units (Ph(CH2)rSiO(3-x)/2(OR?)x)m, (HSiO(3-x)/2(OR?)x)n?(MeSiO(3-x)/2(OR?)x)o?(RSiO(3-x)/2(OR?)x)p, (R1SiO(3-x)/2(OR?)x)q where Ph is a phenyl group, Me is a methyl group; R? is hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; R is selected from an aryl sulfonate ester group; and R1 is selected from substituted phenyl groups, ester groups, polyether groups; mercapto groups, and reactive or curable organic functional groups; and r has a value of 0, 1, 2, 3, or 4; x has a value of 0, 1 or 2; wherein in the resin m has a value of 0 to 0,95; n has a value of 0.05 to 0.95; o has a value of 0.05 to 0.95; p has a value of 0.05 to 0.5; q has a value of 0 to 0.5; and m+n+o+p+q=1.
    Type: Application
    Filed: February 3, 2009
    Publication date: January 6, 2011
    Inventors: Michael L. Bradford, Eric Scott Moyer, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 7833696
    Abstract: Silsesquioxane resins useful in forming the antireflective coating having the formula (PhSiO(3-x)/2(OH)x)mHSiO(3-x)/2(OH)x)n(MeSiO(3-x)/2(OH)x)p(RSiO(3-x)/2(OH)x)q where Ph is a phenyl group, Me is a methyl group, R is selected from ester groups and polyether groups, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, q has a value of 0.01 to 0.30 and m+n+p+q?1.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: November 16, 2010
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Patent number: 7756384
    Abstract: A method of forming an antireflective coating on an electronic device comprising (A) applying to an electronic device an ARC composition comprising (i) a silsesquioxane resin having the formula (PhSiO(3-x)/2(OHx)m HSiO(3-x)/2(OH)x)n, where Ph is a phenyl group, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95 and m+n?1; and (ii) a solvent; and (B) removing the solvent and curing the silsesquioxane resin to form an antireflective coating on the electronic device.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: July 13, 2010
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Publication number: 20090123701
    Abstract: Silsesquioxane resins useful in forming the antireflective coating having the formula (PhSiO(3-x)/2(OH)x)mHSiO(3-x)/2(OH)x)n(MeSiO(3-x)/2(OH)x)p(RSiO(3-x)/2(OH)x)q where Ph is a phenyl group, Me is a methyl group, R is selected from ester groups and polyether groups, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, q has a value of 0.01 to 0.30 and m+n+p+q?1.
    Type: Application
    Filed: September 29, 2005
    Publication date: May 14, 2009
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Publication number: 20090004606
    Abstract: This invention relates to acrylic functional resin compositions. More particularly, this invention relates to Poly [organ-co-(meth)acryloxyorgano]silsequioxane resins that are curable upon exposure to ultraviolet radiation with photo initiator or upon heating with or without a free radical generator. The resin compositions have high storage stability at room temperature and produces films that are useful as planarization layer, interlayer dielectric, passivation layer, gas permeable layer, negative photoresist, antireflective coating, conformal coating and IC packaging.
    Type: Application
    Filed: June 3, 2005
    Publication date: January 1, 2009
    Applicant: DOW CORNING CORPORATION
    Inventors: John Dean Albaugh, Gregory Scott Becker, Sina Magshoodi, Eric Scott Moyer, Sheng Wang, Craig Rollin Yeakle
  • Publication number: 20080273561
    Abstract: A system and method of minimizing the amount of power that is used by an optoelectronic module is disclosed. The system uses a thermoelectric cooler (TEC) to maintain a case temperature of the module at about 50° C. This allows the TEC to operate in the much more efficient heating mode, thus minimizing the amount of current being used to maintain the module temperature. The method includes the steps of determining a temperature range and operating temperature for an optoelectronic module, such that a maximum current level is not exceeded. In one exemplary embodiment, an operating temperature of about 50° C. with a temperature range of from about ?5° C. to about 75° C. allows a maximum current of about 300 mA.
    Type: Application
    Filed: February 22, 2005
    Publication date: November 6, 2008
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Publication number: 20030096090
    Abstract: Silicone resins comprising 5 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x), where Ph is a phenyl group, x has a value of 0, 1 or 2 and wherein the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher. These resins are useful as etch stop layers for organic dielectric materials having a critical surface free energy of 40 dynes/cm or higher.
    Type: Application
    Filed: October 22, 2001
    Publication date: May 22, 2003
    Inventors: Ronald Paul Boisvert, Craig Rollin Yeakle, Stelian Grigoras, David Quocbinh Ha, Brian Robert Harkness
  • Patent number: 6395825
    Abstract: A method for hydrolyzing chlorosilanes having at least three chlorine atoms bonded to each silicon atom to form silicone resins. The method comprises adding at least one of hydridotrichlorosilane, tetrachlorosilane, or organotrichlorosilane to a two-phase mixture comprising a non-polar organic solvent, an aqueous phase comprising 0 to about 43 weight percent hydrochloric acid, and a surface active compound selected from the group consisting of organosulfates described by formula R2SO4H and alkali metal salts thereof, where R2 is selected from the group consisting of alkyl groups comprising about 4 to 16 carbon atoms and alkylphenyl groups comprising 7 to about 22 carbon atoms.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: May 28, 2002
    Assignees: Dow Corning Corporation, Dow Corning Asia, Ltd.
    Inventors: Gregory Scott Becker, Leslie Earl Carpenter, II, Russell Keith King, Tetsuyuki Michino, Eric Scott Moyer, Craig Rollin Yeakle