Patents by Inventor Craig S. Barker

Craig S. Barker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703428
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: July 18, 2023
    Assignee: Life Technologies Corporation
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Publication number: 20220113229
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 14, 2022
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Patent number: 11175203
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 16, 2021
    Assignee: Life Technologies Corporation
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Publication number: 20200284702
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: February 13, 2020
    Publication date: September 10, 2020
    Inventors: Thomas M. BAER, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Patent number: 10605706
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 31, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Publication number: 20190120734
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 25, 2019
    Inventors: Thomas M. BAER, Michael G. YOUNGQUIST, Brian W. DONOVAN, Alan E. WESSEL, Norbert H. LECLERC, Michael A. SMITH, Craig S. BARKER, George M. DAWSON
  • Patent number: 10156501
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 18, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, Craig S. Barker, George M. Dawson
  • Publication number: 20170284907
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: February 16, 2017
    Publication date: October 5, 2017
    Inventors: Thomas M. Baer, Michael G. YOUNGQUIST, Brian W. DONOVAN, Alan E. WESSEL, Norbert H. LECLERC, Michael A. SMITH, Craig S. BARKER, George M. DAWSON
  • Publication number: 20140335560
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 13, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Thomas M. BAER, Michael G. YOUNGQUIST, Brian W. DONOVAN, Alan E. WESSEL, Norbert H. LECLERC, Michael A. SMITH, Craig S. BARKER, George M. DAWSON
  • Patent number: 8722357
    Abstract: Systems and methods for automated laser microdissection are disclosed including automatic slide detection, position detection of cutting and capture lasers, focus optimization for cutting and capture lasers, energy and duration optimization for cutting and capture lasers, inspection and second phase capture and/or ablation in a quality control station and tracking information for linking substrate carrier or output microdissected regions with input sample or slide.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: May 13, 2014
    Assignee: Life Technologies Corporation
    Inventors: Thomas M. Baer, Michael G. Youngquist, Brian W. Donovan, Alan E. Wessel, Norbert H. Leclerc, Michael A. Smith, George M. Dawson, Craig S. Barker
  • Patent number: 6097025
    Abstract: A high-throughput light detection instrument and method are described. In some embodiments, switch mechanisms and optical relay structures permit different light sources and/or detectors to be selected for different applications. In other embodiments, switch mechanisms and optical paths permit top/bottom illumination and/or top/bottom detection, or combinations thereof.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: August 1, 2000
    Assignee: LJL BioSystems, Inc.
    Inventors: Douglas N. Modlin, Glenn R. Edwards, Michael T. Taylor, Samuel A. Marquiss, Amer El-Hage, Craig S. Barker, Lorne B. Bechtel, Rick V. Stellmacher, Philip A. Granieri, Jr., Robert M. Lembi, Sr.
  • Patent number: 5745378
    Abstract: Parameters for controlling a drug infusion pump (10) are selected by scrolling through sets of predefined values. A value for either a rate and/or a volume of a fluid to be infused (VTBI) is displayed by pressing a quickset key (38) on a control panel (18) of the pump. Each time that the quickset key is depressed, the value appearing on a display (22) changes to the next value in the corresponding predefined set of values. It is also contemplated that holding the quickset key depressed for at least a predetermined time will cause the display to continuously scroll through successive values from the set of predefined values. The predefined values are selected in the set because they represent the most common values for the parameters used by the pump. An operator can "fine tune" the displayed value to a desired value that is not in the set of predefined values by pressing either a down arrow key (50) or an up arrow control key (52).
    Type: Grant
    Filed: December 4, 1995
    Date of Patent: April 28, 1998
    Assignee: Abbott Laboratories
    Inventors: Craig S. Barker, Gordon E. Bell
  • Patent number: 5439355
    Abstract: A method and apparatus for determining leakage, particularly of valves, in a pump assembly. A pump assembly (20) includes a primary valve (34) and a secondary valve (36), which may be selectively activated to control the source of fluid input to the pump assembly. The pump assembly also includes an inlet valve (42) and an outlet valve (50) disposed on each side of the pumping chamber (46). Downstream of the outlet valve is disposed a pressure sensor (54), which produces a signal indicative of the pressure of fluid within the pump assembly at that point. Leakage in the inlet or outlet valves is detected in the inlet or outlet valves by filling the pumping chamber with fluid, closing the inlet and outlet valves, and equalizing the pressure in the pump assembly distal to the inlet valve. After the pressure has been equalized, the outlet valve is opened and a reference pulse is determined as a function of the signal produced by the pressure sensor.
    Type: Grant
    Filed: November 3, 1993
    Date of Patent: August 8, 1995
    Assignee: Abbott Laboratories
    Inventors: Walter L. Jimison, Craig S. Barker, Marc R. Bunyard
  • Patent number: 5404748
    Abstract: Risk of hydrodynamic pressure noise interference with a valve leakage test conducted upon a plurality of valves within a pump assembly is minimized. A pressure sensor within the pump assembly produces a signal indicative of hydrodynamic pressure in fluid distal of an outlet valve of the pump. The signal produced by the pressure sensor is input to a microcontroller that controls the pump assembly. Prior to conducting the valve leakage test, the hydrodynamic pressure level of the fluid is sampled at a frequency that is at least twice that of the hydrodynamic noise. The microcontroller determines if a maximum of the samples of the hydrodynamic pressure level taken during a data interval is above a predetermined threshold. If so, the valve leakage test is suppressed until the maximum pressure level is below the predetermined threshold during a successive data interval.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: April 11, 1995
    Assignee: Abbott Laboratories
    Inventors: Walter L. Jimison, Craig S. Barker, Marc R. Bunyard
  • Patent number: 4292780
    Abstract: A method of making wood shingle sidewall panels by assembling a lay-up having one layer of high-grade tapered wood shingles with a staggered butt edge, an intermediate layer of veneer and an opposite layer of low-grade wood shingles with an even butt edge and tapered opposite to the taper of the high-grade wood shingles; bonding the layers of the veneer; severing the panel blank so formed along a line located generally centrally between its opposite edges, thereby forming two sidewall panel blanks of a width approximately one-half the length of the shingles, one panel blank having staggered shingle butts and the other panel blank having even shingle butts; and thereafter cutting the panel blanks to length.
    Type: Grant
    Filed: January 25, 1980
    Date of Patent: October 6, 1981
    Assignee: Shakertown Corporation
    Inventors: Craig S. Barker, Joe L. Bockwinkel
  • Patent number: 4201614
    Abstract: A feed conveyor supplies resawn split shakes of varying thicknesses to an operator at a shake panel assembling machine. The operator arranges shakes in a row with the shake butts generally aligned and the sawn surfaces of the shakes laid on the upper surface of a backing strip to which thermosetting glue has been applied. The assembly of shakes and backing strip is conveyed by a carrier belt to a press station where a solid but readily deformable elastomer pad is pressed against the rough split upper surfaces of the shakes. The pressure of the pad on the shakes causes the pad to be deformed unevenly to conform to the split surfaces of the uneven and varying thickness shakes so that each shake and all portions of each shake are held in engagement with the backing strip under substantially the same pressure while the glue is set by dielectric heating. When the glue has set, the elastomer pad is released from the shakes and the completed assembly is conveyed by the carrier belt to a discharge conveyor.
    Type: Grant
    Filed: November 4, 1977
    Date of Patent: May 6, 1980
    Assignee: Shakertown Corporation
    Inventors: Craig S. Barker, Joe L. Bockwinkel